-1ANSON

گروه اتوماسيون صنعتى استنسون

UNIQUE-G1100S

\&RQAQN

 १ 6 VKFF

* URXS 3 5 , QSXVFHP \&DQ

Chapter 1 Product Information

1.1 Designation Rules and Nameplate of STANSON VFDs:

1.2 Technical Specifications

Item		Specification - Vector control: $0-300 \mathrm{~Hz}$ - V/F control: $0-320 \mathrm{~Hz}$	
Standard functions	Maximum frequency		
	Carrier frequency	$0.5-16 \mathrm{kHz}$ The carrier fre the load featu	y is automatically adjusted based on
	Input frequency resolution	Digital setting: Analog setting	$\begin{aligned} & \mathrm{Hz} \\ & \text { kimum frequency } \times 0.025 \% \end{aligned}$
	Control mode	- Sensorless - Closed-loop - Voltage/Fre	ector control (SFVC) or control (CLVC) y (V/F) control
	Startup torque	- G type: 0.5 - P type: 0.5	$\begin{aligned} & 50 \% \text { (SFVC); } 0 \text { Hz/180\% (CLVC) } \\ & 0 \% \end{aligned}$
	Speed range	1:100 (SFVC)	1:1000 (CLVC)
	Speed stability accuracy	$\begin{aligned} & \text { • } \pm 0.5 \% \text { (SF } \\ & \cdot \\ & \hline \end{aligned}$	
	Torque control accuracy	$\pm 5 \%$ (CLVC)	

Item		Specification
Standard functions	Overload capacity	- G type: 60s for 150% of the rated current, 3s for 180% of the rated current - P type: 60 s for 120% of the rated current, 3 s for 150% of the rated current
	Torque boost	- Fixed boost - Customized boost $0.1 \%-30.0 \%$
	V/F curve	- Straight-line V/F curve - Multi-point V/F curve - N-power V/F curve (1.2-power, 1.4-power, 1.6-power, 1.8-power, square)
	V/F separation	Two types: complete separation; half separation
	Ramp mode	- Straight-line ramp - S-curve ramp Four groups of acceleration/deceleration time with the range of 0.0-6500.0s
	DC braking	DC braking frequency: 0.00 Hz to maximum frequency Braking time: 0.0-36.0s Braking action current value: $0.0 \%-100.0 \%$
	JOG control	JOG frequency range: $0.00-50.00 \mathrm{~Hz}$ JOG acceleration/deceleration time: 0.0-6500.0s
	Onboard multiple preset speeds	It implements up to 16 speeds via the simple PLC function or combination of DI terminal states.
	Onboard PID	It realizes process-controlled closed loop control system easily.
	Auto voltage regulation (AVR)	It can keep constant output voltage automatically when the mains voltage changes.
	Overvoltage/ Overcurrent stall control	The current and voltage are limited automatically during the running process so as to avoid frequent tripping due to overvoltage/overcurrent.
	Torque limit and control	It can limit the torque automatically and prevent frequent over current tripping during the running process. Torque control can be implemented in the CLVC mode.
	High performance	Control of asynchronous motor and synchronous motor are implemented through the high-performance current vector control technology.
Individualized functions	Power dip ride through	The load feedback energy compensates the voltage reduction so that the AC drive can continue to run for a short time.
	Rapid current limit	It helps to avoid frequent overcurrent faults of the AC drive.
	Virtual I/Os	Five groups of virtual DI/Dos can realize simple logic control.
	Timing control	Time range: 0.0-6500.0 minutes

Item		Specification
Individualized functions	Multi-motor switchover	Four motors can be switched over via four groups of motor parameters.
	Multiple communication protocols	It supports communication via Modbus-RTU, PROFIBUSDP, CANlink and CANopen.
	Motor overheat protection	The optional I/O extension card enables AI3 to receive the motor temperature sensor input (PT100, PT1000) so as to realize motor overheat protection.
	Multiple encoder types	It supports various encoders such as differential encoder, open-collector encoder, resolver, UVW encoder, and SIN/ COS encoder.
	User programmable function	The optional programming card helps you to realize secondary development. Its programming environment is compatible with that of the PLC of Inovance.
	Advanced background software	It supports the operation of AC drive parameters and virtual oscillograph function, via which the state inside the AC drive is monitored.
RUN	Running command source	- Operation panel - Control terminals - Serial communication port You can perform switchover between these sources in various ways.
	Frequency source	There are a total of 10 frequency sources, such as digital setting, analog voltage setting, analog current setting, pulse setting and serial communication port setting. You can perform switchover between these sources in various ways.
	Auxiliary frequency source	There are ten auxiliary frequency sources. It can implement fine tuning of auxiliary frequency and frequency synthesis
	Input terminal	Standard: 5 digital input (DI) terminals, one of which supports up to 100 kHz high-speed pulse input 2 analog input (AI) terminals, one of which only supports $0-10 \mathrm{~V}$ voltage input and the other supports $0-10 \mathrm{~V}$ voltage input or 4-20 mA current input Expanding capacity: 5 DI terminals 1 Al terminal that supports $-10-10 \mathrm{~V}$ voltage input and also supports PT100\PT1000

Item		Specification
RUN	Output terminal	Standard 1 high-speed pulse output terminal (open-collector) that supports $0-100 \mathrm{kHz}$ square wave signal output 1 digital output (DO) terminal 1 relay output terminal 1 analog output (AO) terminal that supports $0-20 \mathrm{~mA}$ current output or $0-10 \mathrm{~V}$ voltage output Expanding capacity: 1 DO terminal 1 relay output terminal 1 AO terminal that supports $0-20 \mathrm{~mA}$ current output or $0-10$ \checkmark voltage output
Display and operation on the operation panel	LED display	It displays the parameters.
	Key locking and function selection	It can lock the keys partially or completely and define the function range of some keys so as to prevent mis-function.
	Protection mode	Motor short-circuit detection at power-on, input/output phase loss protection, overcurrent protection, overvoltage protection, undervoltage protection, overheat protection and overload protection
	Optional parts	LCD operation panel, braking unit, I/O extension card 1, 1/O extension card 2, user programmable card, RS485 communication card, PROFIBUS-DP communication card, CANlink communication card, CANopen communication card, differential input PG card, UVW differential input PG card, resolver PG card and OC input PG card
Environment	Installation location	Indoor, free from direct sunlight, dust, corrosive gas, combustible gas, oil smoke, vapour, drip or salt.
	Altitude	Lower than 1000 m
	Ambient temperature	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (de-rated if the ambient temperature is between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$)
	Humidity	Less than $95 \% \mathrm{RH}$, without condensing
	Vibration	Less than $5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{~g})$
	Storage temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	IP level	IP20
	Pollution degree	PD2
	Power distribution system	TN, TT

1.3 Description of Peripheral Electrical Devices

Part	Mounting Location	Function Description
MCCB	Power receiving side	Interrupt the power supply when overcurrent occurs on downstream devices
Contactor	Between MCCB and AC drive input side	Start and stop the AC drive. Do not start and stop the AC drive frequently by switching the contactor on and off (less than twice per minute) nor use it to directly start the AC drive.
AC input reactor	AC drive input side	- Improve the power factor of the input side. - Eliminate the higher harmonics of the input side effectively and prevent other devices from being damaged due to distortion of the voltage waveform. - Eliminate the input current unbalance due to unbalance between the power phases.
EMC	- Reduce the external conduction and radiation interference of the AC drive.	
Input filter		

1) Do not install the capacitor or surge suppressor on the output side of the AC drive. Otherwise, it may cause faults to the AC drive or damage to the capacitor and surge suppressor.
2) Inputs/Outputs (main circuit) of the AC drive contain harmonics, which may interfere with the communication device connected to the AC drive. Therefore, install an anti-interference filter to minimize the interference

Chapter 2 Mechanical and Electrical Installation

2.1 Installation Clearance Requirements

For better cooling down the inverter, it is recommended to install the inverter vertically. There are force cooling fan on the bottom of the inverter, enough space must be guaranteed between these cooling fans and its adjacent objects in all directions, as shown in the following figure

The G1100 series AC drive dissipates heat from the bottom to the top. When multiple AC Gdrives are required to work together, install them side by side.

2.2 Main Circuit Terminals(AC 380V)

$37 \mathrm{~kW}-45 \mathrm{~kW}$

$55 \mathrm{~kW}-90 \mathrm{~kW}$
Table 2-1 Description of main circuit terminals of three-phase AC drive

Terminal	Name	Description
R, S, T	Three-phase power supply input terminals	Connect to the three-phase AC power supply
$(+),(-)$	Positive and negative terminals of DC bus	Common DC bus input point Connect the external braking unit to the AC drive of 37 kW and above.
$(+)$, PR	Connecting terminals of braking resistor	Connect to the braking resistor for the AC drive of 30 kW and below.
P1, (+)	Connecting terminals of external reactor	Connect to an external reactor.
U, V, W	AC drive output terminals	Connect to a three-phase motor.
Θ	Grounding terminal	Must be grounded.

2.3 Description of Control Circuit Terminals

- Terminal Arrangement of Control Circuit

DA	DB	COM	DI1	DI2	DI3	DI4	DI5	DI6	DI7	COM				
$+10 V$	AI1	AI2	GND	AO1	CME	COM	DO1	FFH	OP	$+24 V$	\quad	T/A	T/B	T/C
:---	:---	:---	:---											

Description of Control Circuit Terminals

Table 2-2 Description of control circuit terminals

Type	Terminal	Name	Function Description
$\begin{aligned} & \text { त } \\ & \stackrel{0}{3} \\ & \vdots \\ & \stackrel{0}{0} \\ & 0 . \\ & 0 \end{aligned}$	+10V-GND	External +10 V power supply	Provide +10 V power supply to external unit. Generally, it provides power supply to external potentiometer with resistance range of $1-5 \mathrm{k} \Omega$. Maximum output current: 10 mA
	+24V-COM	External +24 \checkmark power supplyApplying to Overvoltage Category II circuit	Provide +24 V power supply to external unit. Generally, it provides power supply to DI/DO terminals and external sensors. Maximum output current: 200 mA
	OP	Input terminal of external power supply	Connect to +24 V by default. When DI1-DI5 need to be driven by external signal, OP needs to be connected to external power supply and be disconnected from +24 V .

Type	Terminal	Name	Function Description
	AI1-GND	Analog input 1	Input voltage range: 0-10 VDC Impedance: $22 \mathrm{k} \Omega$
	AI2-GND	Analog input 2	Input range: 0-10 VDC/4-20 mA, decided by jumper J8 on the control board Impedance: $22 \mathrm{k} \Omega$ (voltage input), 500Ω (current input)
	DI1	Digital input 1	Optical coupling isolation, compatible with dual polarity input Impedance: $2.4 \mathrm{k} \Omega$ Voltage range for level input: 9-30 V
	DI2	Digital input 2	
	DI3	Digital input 3	
	D14	Digital input 4	
	DI6	Digital input 6	
	D17	Digital input 7	
	DI5	High-speed pulse input	Besides features of DI1-DI7, it can be used for high-speed pulse input. Maximum input frequency: 100 kHz
$\begin{aligned} & \text { OO } \\ & \frac{0}{0} \\ & \frac{0}{4} \\ & \frac{0}{4} \end{aligned}$	AO1-GND	Analog output 1	Voltage or current output is decided by jumper J5. Output voltage range: $0-10 \mathrm{~V}$ Output current range: 0-20 mA
	D01-CME	Digital output 1	Optical coupling isolation, dual polarity open collector output Output voltage range: $0-24 \mathrm{~V}$ Output current range: $0-50 \mathrm{~mA}$ Note that CME and COM are internally insulated, but they are shorted by jumper externally. In this case DO1 is driven by +24 V by default. If you want to drive DO1 by external power supply, remove the jumper.
	FM- COM	High-speed pulse output	It is limited by P5-00 (FM terminal output mode selection). As high-speed pulse output, the maximum frequency hits 100 kHz . As open-collector output, its specification is the same as that of DO1
	T/A-T/B	NC terminal	Contact driving capacity: $\begin{aligned} & 250 \mathrm{VAC}, 3 \mathrm{~A}, \mathrm{COS} \varnothing=0.4 \\ & 30 \mathrm{VDC}, 1 \mathrm{~A} \end{aligned}$ Applying to Overvoltage Category II circuit
	T/A-T/C	NO terminal	
	J12	Extension card interface	I28-pin terminal Connect to an optional card (I/O extension card, PLC card and various bus cards)
	J3	PG card interface	Support various types of PG cards: OC, differential, UVW and resolver.
	J7	External operation panel interface	Connect to external operation panel.

Wiring of AC Drive Control Circuit
External Braking unit (>=18.5kW)

© main circuit terminal
O control circuit

Chapter 3 Operation, Display and Application Examples

3.1 Operation Panel

You can modify the parameters, monitor the working status and start or stop the G1100 by operating the operation panel, as shown in the following figure

Description of Indicators

- RUN

ON indicates that the AC drive is in the running state, and OFF indicates that the AC drive is in the stop state.

- LOCAL/REMOT

It indicates whether the AC drive is operated by means of operation panel, terminals or communication.

OLOCAL/REMOT: OFF	Operation panel control
LOCAL/REMOT: ON	Terminal control
LOCAL/REMOT: blinking	Communication control

- FWD/REV

ON indicates reverse rotation, and OFF indicates forward rotation.

- TUNE/TC

When the indicator is ON, it indicates torque control mode. When the indicator is blinking slowly, it indicates the auto-tuning state. When the indicator is blinking quickly, it indicates the fault state.

- Unit Indicators
means that the indicator is ON , and \bigcirc means that the indicator is OFF.

$\stackrel{\mathrm{Hz}}{\mathrm{O}}-\mathrm{RPM}-\mathrm{A}-\%-\mathrm{V}$ A: unit of current

- Digital Display

The 5-digit LED display is able to display the set frequency, output frequency, monitoring data and fault codes.

Description of Keys on the Operation Panel

Key	Name	Function
PRG	Programming	Enter or exit Level I menu.
ENTER	Confirm	Enter the menu interfaces level by level, and confirm the parameter setting.
\square	Increment	Increase data or function code.
	Decrement	Decrease data or function code.
RUift	RUN	Select the displayed parameters in turn in the stop or running state, and select the digit to be modified when modifying parameters.
Start the AC drive in the operation panel control mode.		

Key	Name	Function
STOP	Stop/Reset	Stop the AC drive when it is in the running state and perform the reset operation when it is in the fault state. The functions of this key are restricted in P7-02.
MST	Multifunction	Perform function switchover (such as quick switchover of command source or direction) according to the setting of P7-01.
QUICK	Menu mode selection	Perform switchover between menu modes according to the setting of PP-03.

3.2 Viewing and Modifying Function Codes

The operation panel of the G1100 adopts three-level menu.
The three-level menu consists of function code group (Level I), function code (Level II), and function code setting value (level III), as shown in the following figure

Figure 3-1 Operation procedure on the operation panel

- After you press ENTER, the system saves the parameter setting first, and then goes back to Level II menu and shifts to the next function code.
- After you press PRG , the system does not save the parameter setting, but directly returns to Level II menu and remains at the current function code.

Here is an example of changing the value of P3-02 to 15.00 Hz .
Figure 3-2 Example of changing the parameter value

In Level III menu, if the parameter has no blinking digit, it means that the parameter cannot be modified. This may be because:

- Such a function code is only readable, such as, AC drive model, actually detected parameter and running record parameter.
- Such a function code cannot be modified in the running state and can only be changed at stop.

3.3 Structure of Function Codes

The G1100, an advanced product based on 3100, groups A and U, and new function codes to group P.

Function Code Group	Function	Description
P0 to PP	Standard AC drive function code group	Compatible with 3100 series function codes and adding some function codes.
A0 to AC	Advanced function code group	Multi-motor parameters, AI/AO correction, optimization control, PLC card extension function setting.
U0 to U3	Running state function code group	Display of AC drive basic parameters

In the function code display state, select the required function code by pressing the key or ∇, as shown in the following figure

Level I menu
Status parameters
(Select the function code group)

PP-02 is used to determine whether group A and group U are displayed.

Function Code	Parameter Name	Setting Range	Default
PP-02	AC drive parameter display property	Unit's digit (group U display selection)	
		Ten's digit (group A display selection)	
		O: Not display 1: Display	

Chapter 4 Function Code Table

If PP-00 is set to a non-zero number, parameter protection is enabled. You must enter the correct user password to enter the menu.

To cancel the password protection function, enter with password and set PP-00 to 0 .
Group P and Group A are standard function parameters. Group U includes the monitoring function parameters.

The symbols in the function code table are described as follows:
" c^{3} ": The parameter can be modified when the AC drive is in either stop or running state.
" \star ": The parameter cannot be modified when the AC drive is in the running state.
"•": The parameter is the actually measured value and cannot be modified
"*": The parameter is factory parameter and can be set only by the manufacturer.
Standard Function Parameters

Function Code	Parameter Name	Setting Range	Default	Property
Group PO: Standard Function Parameters				
P0-00	G/P type display	$\begin{aligned} & \text { 1: G type (constant torque load) } \\ & \text { 2: P type (variable torque load } \\ & \text { e.g. fan and pump) } \\ & \hline \end{aligned}$	Model dependent	-
P0-01	Motor 1 control mode	0: Sensorless flux vector control (SFVC) 1: Closed-loop vector control (CLVC) 2: Voltage/Frequency (V/F) control	0	\star
P0-02	Command source selection	0: Operation panel control (LED off) 1: Terminal control (LED on) 2: Communication control (LED blinking)	0	S
P0-03	Main frequency source X selection	0: Digital setting (non-retentive at power failure) 1: Digital setting (retentive at power failure) 2: Al1 3: AI2 4: Al3	0	\star

Function Code	Parameter Name	Setting Range	Default	Property
P0-03	Main frequency source X selection	5: Pulse setting (DI5) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication setting	0	\star
P0-04	Auxiliary frequency source Y selection	The same as P0-03 (Main frequency source X selection)	0	\star
P0-05	Range of auxiliary frequency Y for X and Y operation	0 : Relative to maximum frequency 1: Relative to main frequency X	0	3
P0-06	Range of auxiliary frequency Y for X and Y operation	0\%-150\%	100\%	N
P0-07	Frequency source selection	Unit's digit (Frequency source selection) 0 : Main frequency source X 1: X and Y operation (operation relationship determined by ten's digit) 2: Switchover between X and Y 3: Switchover between X and " X and Y operation" 4: Switchover between Y and " X and Y operation" Ten's digit (X and Y operation relationship) $0: X+Y$ 1: $X-Y$ 2: Maximum 3: Minimum	00	3
P0-08	Preset frequency	0.00 to maximum frequency (valid when frequency source is digital setting)	50.00 Hz	*
P0-09	Rotation direction	0: Same direction 1: Reverse direction	0	*
P0-10	Maximum frequency	$50.00-320.00 \mathrm{~Hz}$	50.00 Hz	\star
P0-11	Source of frequency upper limit	$\begin{aligned} & \text { 0: Set by P0-12 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { 4: Pulse setting (DI5) } \\ & \text { 5: Communication setting } \end{aligned}$	0	*

Function Code	Parameter Name	Setting Range	Default	Property
P0-12	Frequency upper limit	Frequency lower limit (P0-14) to maximum frequency (P0-10)	50.00 Hz	\%
P0-13	Frequency upper limit offset	0.00 Hz to maximum frequency (P0-10)	0.00 Hz	\%
P0-14	Frequency lower limit	0.00 Hz to frequency upper limit (P0-12)	0.00 Hz	*
P0-15	Carrier frequency	$0.5-16.0 \mathrm{kHz}$	Model dependent	
P0-16	Carrier frequency adjustment with temperature	$\begin{aligned} & \hline \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$	1	\%
P0-17	Acceleration time 1	$\begin{aligned} & 0.00-650.00 \mathrm{~s}(\mathrm{P} 0-19=2) \\ & 0.0-6500.0 \mathrm{~s}(\mathrm{P}-19=1) \\ & 0-65000 \mathrm{~s}(\mathrm{P}-19=0) \end{aligned}$	Model dependent	*
P0-18	Deceleration time 1	$\begin{aligned} & 0.00-650.00 \mathrm{~s}(\mathrm{PO}-19=2) \\ & 0.0-6500.0 \mathrm{~s}(\mathrm{P}-19=1) \\ & 0-65000 \mathrm{~s}(\mathrm{P}-19=0) \end{aligned}$	Model dependent	*
P0-19	Acceleration/Deceleration time unit	$\begin{aligned} & \mathrm{0}: 1 \mathrm{~s} \\ & 1: 0.1 \mathrm{~s} \\ & 2: 0.01 \mathrm{~s} \end{aligned}$	1	\star
P0-21	Frequency offset of auxiliary frequency source for X and Y operation	0.00 Hz to maximum frequency (P0-10)	0.00 Hz	*
P0-22	Frequency reference resolution	$\begin{aligned} & \text { 1: } 0.1 \mathrm{~Hz} \\ & \text { 2: } 0.01 \mathrm{~Hz} \end{aligned}$	2	\star
P0-23	Retentive of digital setting frequency upon power failure	0 : Not retentive 1: Retentive	2	\%
P0-24	Motor parameter group selection	0: Motor parameter group 1 1: Motor parameter group 2 2: Motor parameter group 3 3: Motor parameter group 4	0	\star
P0-25	Acceleration/Deceleration time base frequency	$\begin{aligned} & \text { 0: Maximum frequency }(\mathrm{P} 0-10) \\ & \text { 1: Set frequency } \\ & \text { 2: } 100 \mathrm{~Hz} \end{aligned}$	0	\star
P0-26	Base frequency for UP/ DOWN modification during running	0 : Running frequency 1: Set frequency	0	*

Function Code	Parameter Name	Setting Range	Default	Property
P0-27	Binding command source to frequency source	Unit's digit (Binding operation panel command to frequency source)	000	\cdots
		0: No binding		
		1: Frequency source by digital setting		
		2: Al1		
		3: AI2		
		4: Al3		
		5: Pulse setting (DI5)		
		6: Multi-reference		
		7: Simple PLC		
		8: PID		
		9: Communication setting		
		Ten's digit (Binding terminal command to frequency source)		
		0-9, same as unit's digit		
		Hundred's digit (Binding communication command to frequency source)		
		$0-9$, same as unit's digit		
P0-28	Serial communication protocol	0: Modbus protocol 1: Profibus-D bridge 2: CANopen bridge	0	\cdots
	Group	P1: Motor 1 Parameters		
P1-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor 2: Permanent magnetic synchronous motor	1	*
P1-01	Rated motor power	0.1-1000.0 kW	Model dependent	\star
P1-02	Rated motor voltage	1-2000 V	Model dependent	*
P1-03	Rated motor current	$0.01-655.35$ A (AC drive power \leq 55 kW) 0.1-6553.5 A (AC drive power > 55 kW)	Model dependent	\star
P1-04	Rated motor frequency	0.01 Hz to maximum frequency	Model dependent	\star
P1-05	Rated motor rotational speed	1-65535 RPM	Model dependent	*

Function Code	Parameter Name	Setting Range	Default	Property
P1-06	Stator resistance (asynchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
P1-07	Rotor resistance (asynchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \\ & \hline \end{aligned}$	Model dependent	\star
P1-08	Leakage inductive reactance (asynchronous motor)	```0.01-655.35 mH (AC drive power \leq55 kW) 0.001-65.535 mH (AC drive power > 55 kW)```	Model dependent	\star
P1-09	Mutual inductive reactance (asynchronous motor)	```0.1-6553.5 mH (AC drive power \leq55 kW) 0.01--655.35 mH (AC drive power > 55 kW)```	Model dependent	\star
P1-10	No-load current (asynchronous motor)	0.01 to P1-03 (AC drive power \leq 55 kW) 0.1 to P1-03 (AC drive power > 55 kW)	Model dependent	\star
P1-16	Stator resistance (synchronous motor)	```0.001-65.535 \Omega (AC drive power \leq55 kW) 0.0001-6.5535 \Omega (AC drive power > 55 kW)```	Model dependent	\star
P1-17	Shaft D inductance (synchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH}(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
P1-18	Shaft Q inductance (synchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH} \text { (AC drive } \\ & \text { power }>55 \mathrm{~kW} \text {) } \\ & \hline \end{aligned}$	Model dependent	\star
P1-20	Back EMF (synchronous motor)	$0.1-6553.5 \mathrm{~V}$	Model dependent	\star
P1-27	Encoder pulses per revolution	1-65535	1024	\star
P1-28	Encoder type	0 : ABZ incremental encoder 1: UVW incremental encoder 2: Resolver 3: SIN/COS encoder 4: Wire-saving UVW encoder	0	*
P1-30	A/B phase sequence of $A B Z$ incremental encoder	0: Forward 1: Reserve	0	\star

Function Code	Parameter Name	Setting Range	Default	Property
P1-31	Encoder installation angle	0.0 ${ }^{\circ}-359.9^{\circ}$	0.0°	\star
P1-32	$\mathrm{U}, \mathrm{V}, \mathrm{W}$ phase sequence of UVW encoder	0 : Forward 1: Reverse	0	\star
P1-33	UVW encoder angle offset	$0.0^{\circ}-359.9^{\circ}$	0.0°	\star
P1-34	Number of pole pairs of resolver	1-65535	1	\star
P1-36	Encoder wire-break fault detection time	0.0s: No action 0.1-10.0s	0.0s	\star
P1-37	Auto-tuning selection	0 : No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete auto-tuning 11: Synchronous motor with-load auto-tuning 12: Synchronous motor no-load auto-tuning	0	\star
Group P2: Vector Control Parameters				
P2-00	Speed loop proportional gain 1	0-100	30	3
P2-01	Speed loop integral time 1	0.01-10.00s	0.50s	*
P2-02	Switchover frequency 1	0.00 to P2-05	5.00 Hz	*
P2-03	Speed loop proportional gain 2	0-100	20	*
P2-04	Speed loop integral time 2	0.01-10.00s	1.00s	\star
P2-05	Switchover frequency 2	P2-02 to maximum output frequency	10.00 Hz	*
P2-06	Vector control slip gain	50\%-200\%	100\%	$\stackrel{3}{*}$
P2-07	Time constant of speed loop filter	0.000-0.100s	0.000s	S
P2-08	Vector control overexcitation gain	0-200	64	*
	Torque upper limit source in speed control mode	$\begin{aligned} & \text { 0: P2-10 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: AI3 } \\ & \text { 4: Pulse setting (DI5) } \\ & \text { 5: Communication setting } \end{aligned}$	0	\%
P2-10	Digital setting of torque upper limit in speed control mode	0.0\%-200.0\%	150.0\%	洮

Function Code	Parameter Name	Setting Range	Default	Property
P2－13	Excitation adjustment proportional gain	0－20000	2000	W
P2－14	Excitation adjustment integral gain	0－20000	1300	\％
P2－15	Torque adjustment proportional gain	0－20000	2000	\star
P2－16	Torque adjustment integral gain	0－20000	1300	\checkmark
P2－17	Speed loop integral property	Unit＇s digit：integral separation 0：Disabled 1：Enabled	0	\％
P2－18	Field weakening mode of synchronous motor	0：No field weakenin 1：Direct calculation 2：Automatic adjustment	1	\％
P2－19	Field weakening depth of synchronous motor	50\％－500\％	100\％	＊
P2－20	Maximum field weakening current	1\％－300\％	50\％	洮
P2－21	Field weakening automatic adjustment gain	10\％－500\％	100\％	＊
P2－22	Field weakening integral multiple	2－10	2	率
Group P3：V／F Control Parameters				
P3-00	V／F curve setting	0：Linear V／F 1：Multi－point V／F 2：Square V／F 3：1．2－power V／F 4：1．4－power V／F 6：1．6－power V／F 8：1．8－power V／F 9：Reserved 10：V／F complete separation 11：V／F half separation	0	\star
P3－01	Torque boost	0．0\％（fixed torque boost $0.1 \%-30.0 \%$	Model dependent	呇
P3－02	Cut－off frequency of torque boost	0.00 Hz to maximum output frequency	50.00 Hz	\star
P3－03	Multi－point V／F frequency 1 （F1）	0．00 Hz to P3－05	0.00 Hz	\star
P3－04	Multi－point V／F voltage 1 （V1）	0．0\％－100．0\％	0．0\％	

Function Code	Parameter Name	Setting Range	Default	Property
P3-05	Multi-point V/F frequency 2 (F2)	P3-03 to P3-07	0.00 Hz	\star
P3-06	Multi-point V/F voltage 2 (V2)	0.0\%-100.0\%	0.0\%	\star
P3-07	Multi-point V/F frequency 3 (F3)	P3-05 to rated motor frequency (P1-04) Note: The rated frequencies of motors 2,3 , and 4 are respectively set in A2-04, A3-04, and A4-04.	0.00 Hz	\star
P3-08	Multi-point V/F voltage 3 (V3)	0.0\%-100.0\%	0.0\%	*
P3-09	V/F slip compensation gain	0\%-200.0\%	0.0\%	\star
P3-10	V/F over-excitation gain	0-200	64	H
P3-11	V/F oscillation suppression gain	0-100	Model dependent	3
P3-13	Voltage source for V/F separation	0: Digital setting (P3-14) 1: Al1 2: Al2 3: Al3 4: Pulse setting (DI5) 5: Multi-reference 6: Simple PLC 7: PID 8: Communication setting 100.0% corresponds to the rated motor voltage (P1-02, A4-02, A502, A6-02).	0	\%
P3-14	Voltage digital setting for V/ F separation	0 V to rated motor voltage	0 V	\star
P3-15	Voltage rise time of V/F separation	$0.0-1000.0 \mathrm{~s}$ It indicates the time for the voltage rising from 0 V to rated motor voltage.	0.0s	*
P3-16	Voltage decline time of V/F separation	$0.0-1000.0 \mathrm{~s}$ It indicates the time for the voltage to decline from rated motor voltage to 0 V .	0.0s	*
P3-17	Stop mode selection upon V/F separation	0 : Frequency and voltage declining to 0 independently 1: Frequency declining after voltage declines to 0	0	*

Function Code	Parameter Name	Setting Range	Default	Property
Group P4: Input Terminals				
P4-00	DI1 function selection	0: No function 1: Forward RUN (FWD) 2: Reverse RUN (REV) 3: Three-line control 4: Forward JOG (FJOG) 5: Reverse JOG (RJOG) 6: Terminal UP	1	\star
P4-01	DI2 function selection	7: Terminal DOWN 8: Coast to stop 9: Fault reset (RESET) 10: RUN pause 11: Normally open (NO) input of external fault 12: Multi-reference terminal 1 13: Multi-reference terminal 2	4	\star
P4-02	DI3 function selection	14: Multi-reference terminal 3 15: Multi-reference terminal 4 16: Terminal 1 for acceleration/ deceleration time selection 17: Terminal 2 for acceleration/ deceleration time selection	9	\star
P4-03	DI4 function selection	18: Frequency source switchover 19: UP and DOWN setting clear (terminal, operation panel) 20: Command source switchover terminal 1 21: Acceleration/Deceleration prohibited 22: PID pause 23: PLC status reset 24: Swing pause 25: Counter input 26: Counter reset	12	\star
P4-04	DI5 function selection	27: Length count input 28: Length reset 29: Torque control prohibited	13	\star

Function Code	Parameter Name	Setting Range	Default	Property
P4-05	DI6 function selection	30: Pulse input (enabled only for DI5) 31:Reserved 32: Immediate DC braking 33: Normally closed (NC) input of external fault 34: Frequency modification forbidden 35: Reverse PID action direction	0	\star
P4-06	DI7 function selection	36: External STOP terminal 1 37: Command source switchover terminal 2 38: PID integral pause 39: Switchover between main frequency source X and preset frequency		\star
P4-07	DI8 function selection	40: Switchover between auxiliary frequency source Y and preset frequency 41: Motor selection terminal 1 42: Motor selection terminal 2 43: PID parameter switchover	0	\star
P4-08	D19 function selection	44: User-defined fault 45: User-defined fault 46: Speed control/Torque control switchover 47: Emergency stop	0	\star
P4-09	DI10 function selection	48: External STOP terminal 2 49: Deceleration DC braking 50: Clear the current running time 51: Switchover between two-line mode and three-line mode 52-59: Reserved	0	\star
P4-10	DI filter time	0.000-1.000s	0.010s	\star
P4-11	Terminal command mode	0 : Two-line mode 1 1: Two-line mode 2 2: Three-line mode 1 3: Three-line mode 2	0	*
P4-12	Terminal UP/DOWN rate	$0.01-65.535 \mathrm{~Hz} / \mathrm{s}$	$1.00 \mathrm{~Hz} / \mathrm{s}$	3
P4-13	Al curve 1 minimum input	0.00 V to P4-15	0.00 V	\star

Function Code	Parameter Name	Setting Range	Default	Property
P4-14	Corresponding setting of AI curve 1 minimum input	-100.00\%-100.0\%	0.0\%	T
P4-15	Al curve 1 maximum input	P4-13 to 10.00 V	10.00 V	*
P4-16	Corresponding setting of AI curve 1 maximum input	-100.00\%-100.0\%	100.0\%	呇
P4-17	Al1 filter time	0.00-10.00s	0.10 s	\%
P4-18	Al curve 2 minimum input	0.00 V to P4-20	0.00 V	\star
P4-19	Corresponding setting of AI curve 2 minimum input	-100.00\%-100.0\%	0.0\%	3
P4-20	Al curve 2 maximum input	P4-18 to 10.00 V	10.00 V	\star
P4-21	Corresponding setting of AI curve 2 maximum input	-100.00\%-100.0\%	100.0\%	T
P4-22	Al2 filter time	0.00-10.00s	0.10 s	$\stackrel{3}{3}$
P4-23	Al curve 3 minimum input	0.00 V to P4-25	0.00 V	*
P4-24	Corresponding setting of AI curve 3 minimum input	-100.00\%-100.0\%	0.0\%	洮
P4-25	Al curve 3 maximum input	P4-23 to 10.00 V	10.00 V	*
P4-26	Corresponding setting of AI curve 3 maximum input	-100.00\%-100.0\%	100.0\%	§
P4-27	Al3 filter time	0.00-10.00s	0.10s	3
P4-28	Pulse minimum input	0.00 kHz to P4-30	0.00 kHz	\%
P4-29	Corresponding setting of pulse minimum input	-100.00\%-100.0\%	0.0\%	*
P4-30	Pulse maximum input	P4-28 to 50.00 kHz	50.00 kHz	*
P4-31	Corresponding setting of pulse maximum input	-100.00\%-100.0\%	100.0\%	*
P4-32	Pulse filter time	0.00-10.00s	0.10s	\star

Function Code	Parameter Name	Setting Range	Default	Property
P4-38	DI valid mode selection 1	Thousand's digit (DI4 valid mode)	00000	*
		0, 1 (same as DI1)		
		Ten thousand's digit (DI5 valid mode)		
		0, 1 (same as DI1)		
P4-39	DI valid mode selection 2	Unit's digit (DI6 valid mode)	00000	\star
		0,1 (same as DI1)		
		Ten's digit (DI7 valid mode)		
		0,1 (same as DI1)		
		Hundred's digit (D18 state)		
		0, 1 (same as DI1)		
		Thousand's digit (D19 valid mode)		
		0,1 (same as DI1)		
		Ten thousand's digit (DI10 valid mode)		
		0,1 (same as DI1)		
P4-40	AI2 input signal selection	0 : Voltage signal 1: Current signal	0	\star
Group P5: Output Terminals				
P5-00	FM terminal output mode	0: Pulse output (FMP) 1: Switch signal output (FMR)	0	T
P5-01	FMR function (opencollector output terminal)	0: No output 1: AC drive running 2: Fault output (stop) 3: Frequency-level detection FDT1 output 4: Frequency reached 5: Zero-speed running (no output at stop) 6: Motor overload pre-warning 7: AC drive overload pre-warning 8: Set count value reached 9: Designated count value reached 10: Length reached 11: PLC cycle complete 12: Accumulative running time reached 13: Frequency limited	2	*
P5-02	Relay function (T/A-T/B-T/C)		2	*

Function Code	Parameter Name	Setting Range	Default	Property
P5-03	Extension card relay function (P/A-P/B-P/C)	14: Torque limited 15: Ready for RUN 16: Al1 larger than AI2 17: Frequency upper limit reached 18: Frequency lower limit reached (no output at stop) 19: Undervoltage state output 20: Communication setting 21: Reserved 22: Reserved 23: Zero-speed running 2 (having output at stop) 24: Accumulative power-on time reached 25: Frequency level detection FDT2 output 26: Frequency 1 reached 27: Frequency 2 reached 28: Current 1 reached 29: Current 2 reached 30: Timing reached 31: Al1 input limit exceeded 32: Load becoming 0 33: Reverse running 34: Zero current state 35: Module temperature reached 36: Software current limit exceeded 37: Frequency lower limit reached (having output at stop) 38: Alarm output 39: Motor overheat warning 40: Current running time reached 41: Fault output (There is no output if it is the coast to stop fault and undervoltage occurs.)	0	*
P5-04	O1 function selection (opencollector output terminal)			
P5-04	DO1 function selection (open-collector output terminal)		1	4
P5-05	Extension card DO2 function		4	W

Function Code	Parameter Name	Setting Range	Default	Property
P5－06	FMP function selection	0 ：Running frequency 1：Set frequency 2：Output current 3：Output torque（absolute value） 4：Output power 5：Output voltage 6：Pulse input 7：Al1 8：Al2 9：Al3 10：Length 11：Count value 12：Communication setting 13：Motor rotational speed 14：Output current 15：Output voltage 16：Output torque（actual value）	0	\％
P5－07	AO1 function selection		0	3
P5－08	AO2 function selection		1	H
P5－09	Maximum FMP output frequency	0．01－100．00 kHz	50.00 kHz	\star
P5－10	AO1 offset coefficient	－100．0\％－100．0\％	0．0\％	\％
P5－11	AO1 gain	－10．00－10．00	1.00	3
P5－12	AO2 offset coefficient	－100．0\％－100．0\％	0．00\％	污
P5－13	AO2 gain	－10．00－10．00	1.00	ふ
P5－17	FMR output delay time	0．0－3600．0s	0．0s	＊
P5－18	Relay 1 output delay time	0．0－3600．0s	0．0s	＊
P5－19	Relay 2 output delay time	0．0－3600．0s	0．0s	令
P5－20	DO1 output delay time	0．0－3600．0s	0．0s	\star
P5－21	DO2 output delay time	0．0－3600．0s	0．0s	N

Function Code	Parameter Name	Setting Range	Default	Property
P5-22	DO valid mode selection	Unit's digit (FMR valid mode)	00000	\%
		0: Positive logic		
		1: Negative logic		
		Ten's digit (Relay 1 valid mode)		
		0,1 (same as FMR)		
		Hundred's digit (Relay 2 valid mode)		
		0, 1 (same as FMR)		
		Thousand's digit (DO1 valid mode)		
		0,1 (same as FMR)		
		Ten thousand's digit (DO2 valid mode)		
		0,1 (same as FMR)		
P5-23	AO1 output signal selection	0 : Voltage signal 1: Current signal	0	\star
Group P6: Start/Stop Control				
P6-00	Start mode	0: Direct start 1: Rotational speed tracking restart 2: Pre-excited start (asynchronous motor)	0	\cdots
P6-01	Rotational speed tracking mode	0: From frequency at stop 1: From zero speed 2: From maximum frequency	0	\star
P6-02	Rotational speed tracking speed	1-100	20	\star
P6-03	Startup frequency	0.00-10.00 Hz	0.00 Hz	$\stackrel{3}{*}$
P6-04	Startup frequency holding time	0.0-100.0s	0.0s	\star
P6-05	Startup DC braking current/ Pre-excited current	0\%-100\%	0\%	\star
P6-06	Startup DC braking time/ Pre-excited time	0.0-100.0s	0.0s	\star
P6-07	Acceleration/Deceleration mode	0: Linear acceleration/ deceleration 1: S-curve acceleration/ deceleration A 2: S-curve acceleration/ deceleration B	0	\star

Function Code	Parameter Name	Setting Range	Default	Property
P6-08	Time proportion of S-curve start segment	0.0\% to (100.0\% - P6-09)	30.0\%	\star
P6-09	Time proportion of S-curve end segment	0.0\% to (100.0\% - P6-08)	30.0\%	\star
P6-10	Stop mode	0: Decelerate to stop 1: Coast to stop	0	*
P6-11	Initial frequency of stop DC braking	0.00 Hz to maximum frequency	0.00 Hz	*
P6-12	Waiting time of stop DC braking	0.0-36.0s	0.0s	\%
P6-13	Stop DC braking current	0\%-100\%	0\%	\star
P6-14	Stop DC braking time	0.0-36.0s	0.0s	\%
P6-15	Brake use ratio	0\%-100\%	100\%	\star
Group P7: Operation Panel and Display				
P7-01	MF.K Key function selection	0: MF.K key disabled 1: Switchover between operation panel control and remote command control (terminal or communication) 2: Switchover between forward rotation and reverse rotation 3: Forward JOG 4: Reverse JOG	0	\star
P7-02	STOP/RESET key function	0: STOP/RESET key enabled only in operation panel control 1: STOP/RESET key enabled in any operation mode	1	*
P7-03	LED display running parameters 1	0000-FFFF Bit00: Running frequency $1(\mathrm{~Hz})$ Bit01: Set frequency (Hz) Bit02: Bus voltage (V) Bit03: Output voltage (V) Bit04: Output current (A) Bit05: Output power (kW) Bit06: Output torque (\%) Bit07: DI input status	1F	\star

Function Code	Parameter Name	Setting Range	Default	Property
P7-03	LED display running parameters 1	Bit08: DO output status Bit09: Al1 voltage (V) Bit10: Al2 voltage (V) Bit11: Al3 voltage (V) Bit12: Count value Bit13: Length value Bit14: Load speed display Bit15: PID setting	1F	*
P7-04	LED display running parameters 2	0000-FFFF Bit00: PID feedback Bit01: PLC stage Bit02: Pulse setting frequency (kHz) Bit03: Running frequency $2(\mathrm{~Hz})$ Bit04: Remaining running time Bit05: Al1 voltage before correction (V) Bit06: Al2 voltage before correction (V) Bit07: Al3 voltage before correction (V) Bit08: Linear speed Bit09: Current power-on time (Hour) Bit10: Current running time (Min) Bit11: Pulse setting frequency (Hz) Bit12: Communication setting value Bit13: Encoder feedback speed (Hz) Bit14: Main frequency X display (Hz) Bit15: Auxiliary frequency Y display (Hz)	0	*

Function Code	Parameter Name	Setting Range	Default	Property
		0000-FFFF Bit00: Set frequency (Hz) Bit01: Bus voltage (V) Bit02: DI input status Bit03: DO output status Bit04: Al1 voltage (V) Bit05: Al2 voltage (V) Bit06: Al3 voltage (V) Bit07: Count value Bit08: Length value Bit09: PLC stage Bit10: Load speed Bit11: PID setting Bit12: Pulse setting frequency (kHz)		
LED display stop parameters				
P7-06	Load speed display coefficient	$0.0001-6.5000$	33	~

Function Code	Parameter Name	Setting Range	Default	Property
P8-05	Acceleration time 3	0.0-6500.0s	Model dependent	*
P8-06	Deceleration time 3	0.0-6500.0s	Model dependent	*
P8-07	Acceleration time 4	0.0-500.0s	Model dependent	\star
P8-08	Deceleration time 4	0.0-6500.0s	Model dependent	
P8-09	Jump frequency 1	0.00 Hz to maximum frequency	0.00 Hz	is
P8-10	Jump frequency 2	0.00 Hz to maximum frequency	0.00 Hz	\star
P8-11	Frequency jump amplitude	0.00 Hz to maximum frequency	0.00 Hz	\star
P8-12	Forward/Reverse rotation dead-zone time	0.0-3000.0s	0.0s	\star
P8-13	Reverse control	0: Enabled 1: Disabled	0	\star
P8-14	Running mode when set frequency lower than frequency lower limit	0 : Run at frequency lower limit 1: Stop 2: Run at zero speed	0	*
P8-15	Droop control	$0.00-10.00 \mathrm{~Hz}$	0.00 Hz	3
P8-16	Accumulative power-on time threshold	0-65000 h	0 h	\star
P8-17	Accumulative running time threshold	0-65000 h	0 h	\star
P8-18	Startup protection	$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$	0	*
P8-19	Frequency detection value (FDT1)	0.00 Hz to maximum frequency	50.00 Hz	\star
P8-20	Frequency detection hysteresis (FDT hysteresis 1)	0.0\%-100.0\% (FDT1 level)	5.0\%	\%
P8-21	Detection range of frequency reached	0.00-100\% (maximum frequency)	0.0\%	\star
P8-22	Jump frequency during acceleration/deceleration	0: Disabled1: Enabled	0	*
P8-25	Frequency switchover point between acceleration time 1 and acceleration time 2	0.00 Hz to maximum frequency	0.00 Hz	*
P8-26	Frequency switchover point between deceleration time 1 and deceleration time 2	0.00 to maximum frequency	0.00 Hz	*
P8-27	Terminal JOG preferred	0: Disabled1: Enabled	0	\star

Function Code	Parameter Name	Setting Range	Default	Property
P8-28	Frequency detection value (FDT2)	0.00 to maximum frequency	50.00 Hz	*
P8-29	Frequency detection hysteresis (FDT hysteresis 2)	0.0\%-100.0\% (FDT2 level)	5.0\%	\star
P8-30	Any frequency reaching detection value 1	0.00 Hz to maximum frequency	50.00 Hz	*
P8-31	Any frequency reaching detection amplitude 1	0.0\%-100.0\% (maximum frequency)	0.0\%	*
P8-32	Any frequency reaching detection value 2	0.00 Hz to maximum frequency	50.00 Hz	涵
P8-33	Any frequency reaching detection amplitude 2	0.0\%-100.0\% (maximum frequency)	0.0\%	约
P8-34	Zero current detection level	0.0\%-300.0\% (rated motor current)	5.0\%	*
P8-35	Zero current detection delay time	0.00-600.00s	0.10s	\star
P8-36	Output overcurrent threshold	0.0\% (no detection) 0.1\%-300.0\% (rated motor current)	200.0\%	*
P8-37	Output overcurrent detection delay time	0.00-600.00s	0.00s	\star
P8-38	Any current reaching 1	0.0\%-300.0\% (rated motor current)	100.0\%	*
P8-39	Any current reaching 1 amplitude	0.0\%-300.0\% (rated motor current)	0.0\%	*
P8-40	Any current reaching 2	0.0\%-300.0\% (rated motor current)	100.0\%	*
P8-41	Any current reaching 2 amplitude	0.0\%-300.0\% (rated motor current)	0.0\%	\%
P8-42	Timing function	0: Disabled 1: Enabled	0	*
	Timing duration source	$\begin{aligned} & \hline \text { 0: P8-44 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { (100\% of analog input corresponds } \\ & \text { to the value of P8-44) } \end{aligned}$	0	*
P8-44	Timing duration	$0.0-6500.0 \mathrm{~min}$	0.0 min	\star
P8-45	Al1 input voltage lower limit	0.00 V to P8-46	3.10 V	3
P8-46	Al1 input voltage upper limit	P8-45 to 10.00 V	6.80 V	3

Function Code	Parameter Name	Setting Range	Default	Property
P8-47	Module temperature threshold	$0-100^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	H
P8-48	Cooling fan control	0 : Fan working during running 1: Fan working continuously	0	*
P8-49	Wakeup frequency	Dormant frequency (P8-51) to maximum frequency (P0-10)	0.00 Hz	-
P8-50	Wakeup delay time	0.0-6500.0s	0.0s	*
P8-51	Dormant frequency	0.00 Hz to wakeup frequency (P8- 49)	0.00 Hz	H
P8-52	Dormant delay time	0.0-6500.0s	0.0s	预
P8-53	Current running time reached	0.0-6500.0 min	0.0 min	*
P8-54	Output power correction coefficient	0.00\%-200 .0\%	100.0\%	*
Group P9: Fault and Protection				
P9-00	Motor overload protection selection	0: Disabled 1: Enabled	1	\%
P9-01	Motor overload protection gain	0.20-10.00	1.00	\cdots
P9-02	Motor overload warning coefficient	50\%-100\%	80\%	\star
P9-03	Overvoltage stall gain	0 (no stall overvoltage)-100	0	*
P9-04	Overvoltage stall protective voltage	120\%-150\%	130\%	\star
P9-05	Overcurrent stall gain	0-100	20	$\stackrel{3}{*}$
P9-06	Overcurrent stall protective current	100\%-200\%	150\%	\%
P9-07	Short-circuit to ground upon power-on	0: Disabled 1: Enabled	1	*
P9-09	Fault auto reset times	0-20	0	\star
P9-10	DO action during fault auto reset	$\begin{aligned} & \text { 0: Not act } \\ & \text { 1: Act } \end{aligned}$	0	\star
P9-11	Time interval of fault auto reset	0.1s-100.0s	1.0s	*
P9-12	Input phase loss protection/ contactor energizing protection selection	Unit's digit: Input phase loss protection Ten's digit: Contactor energizing protection 0: Disabled 1: Enabled	11	\star

Function Code	Parameter Name	Setting Range	Default	Property
P9-16	3rd (latest) fault type	40: With-wave current limit fault 41: Motor switchover fault during running 42: Too large speed deviation 43: Motor over-speed 45: Motor overheat 51: Initial position fault	-	\bullet
P9-17	Frequency upon 3rd fault	-	-	-
P9-18	Current upon 3rd fault	-	-	-
P9-19	Bus voltage upon 3rd fault	-	-	\bullet
P9-20	DI status upon 3rd fault	-	-	\bullet
P9-21	Output terminal status upon 3rd fault	N	-	\bullet
P9-22	AC drive status upon 3rd fault		-	\bullet
P9-23	Power-on time upon 3rd fault	$-$	-	-
P9-24	Running time upon 3rd fault	-	-	\bullet
P9-27	Frequency upon 2nd fault	-	-	\bullet
P9-28	Current upon 2nd fault	-	-	-
P9-29	Bus voltage upon 2nd fault	-	-	\bullet
P9-30	DI status upon 2nd fault	-	-	\bullet
P9-31	Output terminal status upon 2nd fault	-	-	-
P9-32	Frequency upon 2nd fault	-	-	\bullet
P9-33	Current upon 2nd fault	-	-	-
P9-34	Bus voltage upon 2nd fault	-	-	\bullet
P9-37	DI status upon 1st fault	-	-	\bullet
P9-38	Output terminal status upon 1st fault	-	-	-
P9-39	Frequency upon 1st fault	-	-	\bullet
P9-40	Current upon 1st fault	-	-	-
P9-41	Bus voltage upon 3rd fault	-	-	\bullet
P9-42	DI status upon 1st fault	-	-	\bullet
P9-43	Output terminal status upon 1st fault	-	-	-
P9-44	Frequency upon 1st fault	-	-	\bullet

$\begin{array}{\|l\|} \hline \text { Function } \\ \text { Code } \end{array}$	Parameter Name	Setting Range	Default	Property
P9-49	Fault protection action selection 3	Unit's digit (User-defined fault 1, Err27)	00000	3
		Same as unit's digit in P9-47		
		Ten's digit (User-defined fault 2, Err28)		
		Same as unit's digit in P9-47		
		Hundred's digit (Accumulative power-on time reached, Err29)		
		Same as unit's digit in P9-47		
		Thousand's digit (Load becoming 0, Err30)		
		0: Coast to stop		
		1: Stop according to the stop mode		
		2: Continue to run at 7% of rated motor frequency and resume to the set frequency if the load recovers		
		Ten thousand's digit (PID feedback lost during running, Err31)		
		Same as unit's digit in P9-47		
P9-50	Fault protection action selection 4	Unit's digit (Too large speed deviation, Err42)	00000	*
		Same as unit's digit in P9-47		
		Ten's digit (Motor over-speed, Err43)		
		Same as unit's digit in P9-47		
		Hundred's digit (Initial position fault, Err51)		
		Same as unit's digit inP9-47		
		Thousand's digit (Speed feedback fault, Err52)		
		Same as unit's digit in P9-47		
		Ten thousand's digit: Reserved		
P9-54	Frequency selection for continuing to run upon fault	0: Current running frequency 1: Set frequency 2: Frequency upper limit 3: Frequency lower limit 4: Backup frequency upon abnormality	0	3

Function Code	Parameter Name	Setting Range	Default	Property
P9-55	Backup frequency upon abnormality	0.0\%-100.0\% (maximum frequency)	100.0\%	\%
P9-56	Type of motor temperature sensor	0: No temperature sensor 1: PT100 2: PT1000	1	H
P9-57	Motor overheat protection threshold	$0-200^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	
P9-58	Motor overheat warning threshold	$0-200^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$\frac{4}{3}$
P9-59	Action selection at instantaneous power failure	0: Invalid 1: Decelerate 2: Decelerate to stop	0	\%
P9-60	Action pause judging voltage at instantaneous power failure	80.0\%-100.0\%	90.0\%	*
P9-61	Voltage rally judging time at instantaneous power failure	0.00-100.00s	0.50s	*
P9-62	Action judging voltage at instantaneous power failure	$60.0 \%-100.0 \%$ (standard bus voltage)	80.0\%	\%
P9-63	Protection upon load becoming 0	0: Disabled 1: Enabled	0	洮
P9-64	Detection level of load becoming 0	0.0\%-100.0\% (rated motor current)	10.0\%	产
P9-65	Detection time of load becoming 0	0.0-60.0s	1.0s	*
P9-67	Over-speed detection value	0.0\%-50.0\% (maximum frequency)	20.0\%	\%
P9-68	Over-speed detection time	0.0-60.0s	1.0s	*
P9-69	Detection value of too large speed deviation	0.0\%-50.0\% (maximum frequency)	20.0\%	\star
P9-70	Detection time of too large speed deviation	0.0-60.0s	5.0s	\star
Group PA: Process Control PID Function				
PA-00	PID setting source	0: PA-01 1: Al1 2: Al2 3: Al3 4: Pulse setting (DI5) 5: Communication setting 6: Multi-reference	0	3
PA-01	PID digital setting	0.0\%-100.0\%	50.0\%	3

Function Code	Parameter Name	Setting Range	Default	Property
PA－02	PID feedback source	$\begin{aligned} & \text { 0: Al1 } \\ & \text { 1: Al2 } \\ & \text { 2: Al3 } \\ & \text { 3: Al1 - AI2 } \\ & \text { 4: Pulse setting (DI5) } \\ & \text { 5: Communication setting } \\ & \text { 6: Al1 + Al2 } \\ & \text { 7: MAX (\|AI1\|, \|AI2\|) } \\ & \text { 8: MIN (\|AI1\|, \|AI2\|) } \\ & \hline \end{aligned}$	0	3
PA－03	PID action direction	0 ：Forward action 1：Reverse action	0	T
PA－04	PID setting feedback range	0－65535	1000	3
PA－05	Proportional gain Kp1	0．0－100．0	20.0	＊
PA－06	Integral time Ti1	0．01－10．00s	2.00 s	\star
PA－07	Differential time Td1	0．00－10．000	0．000s	＊
PA－08	Cut－off frequency of PID reverse rotation	0.00 to maximum frequency	2.00 Hz	＊
PA－09	PID deviation limit	0．0\％－100．0\％	0．0\％	令
PA－10	PID differential limit	0．00\％－100．00\％	0．10\％	\star
PA－11	PID setting change time	0．00－650．00s	0．00s	\％
PA－12	PID feedback filter time	0．00－60．00s	0．00s	\％
PA－13	PID output filter time	0．00－60．00s	0．00s	湤
PA－14	Reserved	－	－	\star
PA－15	Proportional gain Kp2	0．0－100．0	20.0	\％
PA－16	Integral time Ti2	0．01－10．00s	2．00s	令
PA－17	Differential time Td2	0．000－10．000s	0．000s	ふ
PA－18	PID parameter switchover condition	0：No switchover 1：Switchover via DI 2：Automatic switchover based on deviation	0	＊
PA－19	PID parameter switchover deviation 1	0．0\％to PA－20	20．0\％	\％
PA－20	PID parameter switchover deviation 2	PA－19 to 100．0\％	80．0\％	\％
PA－21	PID initial value	0．0\％－100．0\％	0．0\％	H
PA－22	PID initial value holding time	0．00－650．00s	0．00s	3
PA－23	Maximum deviation between two PID outputs in forward direction	0．00\％－100．00\％	1．00\％	N

Function Code	Parameter Name	Setting Range	Default	Property
PA-24	Maximum deviation between two PID outputs in reverse direction	0.00\%-100.00\%	1.00\%	i
PA-25	PID integral property	Unit's digit (Integral separated)	00	
		0 : Invalid 1: Valid		
		Ten's digit (Whether to stop integral operation when the output reaches the limit)		\cdots
		0: Continue integral operation 1: Stop integral operation		
PA-26	Detection value of PID feedback loss	0.0\%: Not judging feedback loss 0.1\%-100.0\%	0.0\%	*
PA-27	Detection time of PID feedback loss	0.0-20.0s	0.0s	\%
PA-28	PID operation at stop	0: No PID operation at stop 1: PID operation at stop	0	\%
Group PB: Swing Frequency, Fixed Length and Count				
PB-00	Swing frequency setting mode	0 : Relative to the central frequency 1: Relative to the maximum frequency	0	t
PB-01	Swing frequency amplitude	0.0\%-100.0\%	0.0\%	*
PB-02	Jump frequency amplitude	0.0\%-50.0\%	0.0\%	*
PB-03	Swing frequency cycle	0.0-3000.0s	10.0s	*
PB-04	Triangular wave rising time coefficient	0.0\%-100.0\%	50.0\%	\%
PB-05	Set length	0-65535 m	1000 m	*
PB-06	Actual length	0-65535 m	0 m	约
PB-07	Number of pulses per meter	0.1-6553.5	100.0	*
PB-08	Set count value	1-65535	1000	*
PB-09	Designated count value	1-65535	1000	\%
Group PC: Multi-Reference and Simple PLC Function				
PC-00	Reference 0	-100.0\%-100.0\%	0.0\%	\star
PC-01	Reference 1	-100.0\%-100.0\%	0.0\%	*
PC-02	Reference 2	-100.0\%-100.0\%	0.0\%	\%
PC-03	Reference 3	-100.0\%-100.0\%	0.0\%	*
PC-04	Reference 4	-100.0\%-100.0\%	0.0\%	*

Function Code	Parameter Name	Setting Range	Default	Property
PC-05	Reference 5	-100.0\%-100.0\%	0.0\%	\%
PC-06	Reference 6	-100.0\%-100.0\%	0.0\%	3
PC-07	Reference 7	-100.0\%-100.0\%	0.0\%	\%
PC-08	Reference 8	-100.0\%-100.0\%	0.0\%	H
PC-09	Reference 9	-100.0\%-100.0\%	0.0\%	*
PC-10	Reference 10	-100.0\%-100.0\%	0.0\%	\downarrow
PC-11	Reference 11	-100.0\%-100.0\%	0.0\%	*
PC-12	Reference 12	-100.0\%-100.0\%	0.0\%	\%
PC-13	Reference 13	-100.0\%-100.0\%	0.0\%	\star
PC-14	Reference 14	-100.0\%-100.0\%	0.0\%	*
PC-15	Reference 15	-100.0\%-100.0\%	0.0\%	$\stackrel{3}{3}$
PC-16	Simple PLC running mode	0 : Stop after the AC drive runs one cycle 1: Keep final values after the AC drive runs one cycle 2: Repeat after the AC drive runs one cycle	0	H
PC-17	Simple PLC retentive selection	Unit's digit (Retentive upon power failure) 0: No 1: Yes Ten's digit (Retentive upon stop) 0: No 1: Yes	00	3
PC-18	Running time of simple PLC reference 0	0.0-6553.5s (h)	0.0s (h)	\%
PC-19	Acceleration/deceleration time of simple PLC reference 0	0-3	0	\%
PC-20	Running time of simple PLC reference 1	0.0-6553.5s (h)	0.0s (h)	\%
PC-21	Acceleration/deceleration time of simple PLC reference 1	0-3	0	洮
PC-22	Running time of simple PLC reference 2	0.0-6553.5s (h)	0.0s (h)	H
PC-23	Acceleration/deceleration time of simple PLC reference 2	0-3	0	*
PC-24	Running time of simple PLC reference 3	0.0-6553.5s (h)	0.0s (h)	\star
PC-25	Acceleration/deceleration time of simple PLC reference 3	0-3	0	*

Function Code	Parameter Name	Setting Range	Default	Property
PC－26	Running time of simple PLC reference 4	0．0－6553．5s（h）	0．0s（h）	约
PC－27	Acceleration／deceleration time of simple PLC reference 4	0－3	0	约
PC－28	Running time of simple PLC reference 5	0．0－6553．5s（h）	0．0s（h）	T
PC－29	Acceleration／deceleration time of simple PLC reference 5	0－3	0	3
PC－30	Running time of simple PLC reference 6	0．0－6553．5s（h）	0．0s（h）	T
PC－31	Acceleration／deceleration time of simple PLC reference 6	0－3	0	呇
PC－32	Running time of simple PLC reference 7	0．0－6553．5s（h）	0．0s（h）	＊
PC－33	Acceleration／deceleration time of simple PLC reference 7	0－3	0	约
PC－34	Running time of simple PLC reference 8	0．0－6553．5s（h）	0．0s（h）	＊
PC－35	Acceleration／deceleration time of simple PLC reference 8	0-3	0	\star
PC－36	Running time of simple PLC reference 9	0．0－6553．5s（h）	0．0s（h）	约
PC－37	Acceleration／deceleration time of simple PLC reference 9	0－3	0	＊
PC－38	Running time of simple PLC reference 10	0．0－6553．5s（h）	0．0s（h）	W
PC－39	Acceleration／deceleration time of simple PLC reference 10	0－3	0	＊
PC－40	Running time of simple PLC reference 11	0．0－6553．5s（h）	0．0s（h）	T
PC－41	Acceleration／deceleration time of simple PLC reference 11	0－3	0	＊
PC－42	Running time of simple PLC reference 12	0．0－6553．5s（h）	0．0s（h）	＊
PC－43	Acceleration／deceleration time of simple PLC reference 12	0－3	0	＊
PC－44	Running time of simple PLC reference 13	0．0－6553．5s（h）	0．0s（h）	\％
PC－45	Acceleration／deceleration time of simple PLC reference 13	0－3	0	约
PC－46	Running time of simple PLC reference 14	0．0－6553．5s（h）	0．0s（h）	＊

Function Code	Parameter Name	Setting Range	Default	Property
PC-47	Acceleration/deceleration time of simple PLC reference 14	0-3	0	浐
PC-48	Running time of simple PLC reference 15	0.0-6553.5s (h)	0.0s (h)	W
PC-49	Acceleration/deceleration time of simple PLC reference 15	0-3	0	*
PC-50	Time unit of simple PLC running	0: s (second)1:h (hour)	0	is
PC-51	Reference 0 source	0: Set by FC-00 1: Al1 2: Al2 3: Al3 4: Pulse setting 5: PID 6: Set by preset frequency (F008), modified via terminal UP DOWN	0	H

Function Code	Parameter Name	Setting Range	Default	Property
Group PD: Communication Parameters				
PD-00	Baud rate	Unit's digit (Modbus baud rate)	6005	N
		0.300 BPs		
		1: 600 BPs		
		2: 1200 BPs		
		3: 2400 BPs		
		4: 4800 BPs		
		5: 9600 BPs		
		6: 19200 BPs		
		7: 38400 BPs		
		8: 57600 BPs		
		9: 115200 BPs		
		Ten's digit (PROFIBUS-DP baud rate)		
		0: 115200 BPs		
		1: 208300 BPs		
		2: 256000 BPs		
		3: 512000 Bps		
		Hundred's digit (reserved)		
		Thousand's digit (CANlink baud rate)		
		0: 20		
		1:50		
		2: 100		
		3: 125		
		4: 250		
		5: 500		
		6: 1 M		
		0: No check, data format <8,N,2>		
		1: Even parity check, data format <8,E,1>		
PD-01	Data format	2: Odd Parity check, data format <8,0,1>	0	*
		3: No check, data format <8,N,1>		
		Valid for Modbus		
		0: Broadcast address		
PD-02	Local address	1-247	1	
PD-02	Local address	Valid for Modbus, PROFIBUS-DP and CANlink	1	W

Function Code	Parameter Name	Setting Range	Default	Property
PD-03	Response delay	$\begin{aligned} & \hline 0-20 \mathrm{~ms} \\ & \text { Valid for Modbus } \end{aligned}$	2 ms	*
PD-04	Communication timeout	0.0s (invalid) 0.1-60.0s Valid for Modbus, PROFIBUS-DP and CANopen	0.0s	H
PD-05	Modbus protocol selection and PROFIBUS-DP data format	Unit's digit: Modbus protocol		3
		0: Non-standard Modbus protocol 1: Standard Modbus protocol		
		Ten's digit: PROFIBUS-DP data format		
		0: PPO1 format 1: PPO2 format 2: PPO3 format 3: PPO5 format		
PD-06	Communication reading current resolution	$\begin{aligned} & \text { 0: } 0.01 \mathrm{~A} \\ & 1: 0.1 \mathrm{~A} \end{aligned}$	0	*
PD-08	CANlink communication timeout time	$\begin{aligned} & 0.0 \mathrm{~s}: \text { Invalid } \\ & 0.1-60.0 \mathrm{~s} \end{aligned}$	0	*
Group PE: User-defined Parameters				
PE-00	User-defined function code 0	$\begin{aligned} & \text { P0-00 to PP-xx } \\ & \text { AO-00 to Ax-xx } \\ & \text { U0-xx to U0-xx } \end{aligned}$	P0-10	\star
PE-01	User-defined function code 1		P0-02	*
PE-02	User-defined function code 2		P0-03	*
PE-03	User-defined function code 3		P0-07	*
PE-04	User-defined function code 4		P0-08	$\stackrel{3}{*}$
PE-05	User-defined function code 5		P0-17	\cdots
PE-06	User-defined function code 6		P0-18	呇
PE-07	User-defined function code 7		P3-00	\star
PE-08	User-defined function code 8		P3-01	H
PE-09	User-defined function code 9		P4-00	\rangle
PE-10	User-defined function code 10		P4-01	H
PE-11	User-defined function code 11		P4-02	*
PE-12	User-defined function code 12		P5-04	H
PE-13	User-defined function code 13		P5-07	*
PE-14	User-defined function code 14		P6-00	\star

Function Code	Parameter Name	Setting Range	Default	Property
PP-03	Individualized parameter display property	Unit's digit (User-defined parameter display selection)	00	*
		0 : Not display 1: Display		
		Ten's digit (User-modified parameter display selection)		
		0 : Not display 1: Display		
PP-04	Parameter modification property	0: Modifiabl 1: Not modifiabl	0	\%
Group A0: Torque Control and Restricting Parameters				
A0-00	Speed/Torque control selection	0: Speed control 1: Torque control	0	\star
A0-01	Torque setting source in torque control	0 : Digital setting (AO-03) 1: Al1 2: Al2 3: Al3 4: Pulse setting (DI5) 5: Communication setting 6: MIN (AI1, Al2) 7: MAX (Al1, Al2) Full range of values 1-7 corresponds to the digital setting of A0-03.	0	\star
A0-03	Torque digital setting in torque control	-200.0\%-200.0\%	150.0\%	\star
A0-05	Forward maximum frequency in torque control	0.00 Hz to maximum frequency \|(P0-10)	50.00 Hz	\%
A0-06	Reverse maximum frequency in torque control	0.00 Hz to maximum frequency \|(P0-10)	50.00 Hz	\%
A0-07	Acceleration time in torque control	0.00-65000s	0.00s	\%
A0-08	Deceleration time in torque control	0.00-65000s	0.00s	\%
Group A1: Virtual DI (VDI)/Virtual DO (VDO)				
A1-00	VDI1 function selection	0-59	0	\star
A1-01	VDI2 function selection	0-59	0	\star
A1-02	VDI3 function selection	0-59	0	\star
A1-03	VDI4 function selection	0-59	0	\star

Function Code	Parameter Name	Setting Range	Default	Property
A1-04	VDI5 function selection	0-59	0	\star
A1-05	VDI state setting mode	Unit's digit (VDI1)	00000	\star
		0: Decided by state of VDOx 1: Decided by A1-06		
		Ten's digit (VDI2)		
		0, 1 (same as VDI1)		
		Hundred's digit (VDI3)		
		0,1 (same as VDI1)		
		Thousand's digit (VDI4)		
		0,1 (same as VDI1)		
		Ten thousand's digit (VDI5)		
		0, 1 (same as VDI1)		
A1-06	VDI state selection	Unit's digit (VDI1)	00000	*
		0: Invalid		
		1: Valid		
		Ten's digit (VDI2)		
		0,1 (same as VDI1)		
		Hundred's digit (VDI3)		
		0,1 (same as VDI1)		
		Thousand's digit (VDI4)		
		0, 1 (same as VDI1)		
		Ten thousand's digit (VDI5)		
		0,1 (same as VDI1)		
A1-07	Function selection for AI1 used as DI	0-59	0	\star
A1-08	Function selection for AI2 used as DI	0-59	0	\star
A1-09	Function selection for Al3 used as DI	0-59	0	\star
A1-10	State selection for AI used as DI	Unit's digit (Al1)	000	*
		0 : High level valid 1: Low level valid		
		Ten's digit (Al2)		
		0,1 (same as unit's digit)		
		Hundred's digit (Al3)		
		0,1 (same as unit's digit)		

Function Code	Parameter Name	Setting Range	Default	Property
A1-11	VDO1 function selection	0: Short with physical DIx internally 1-40: Refer to function selection of physical DO in group P5.	0	\%
A1-12	VDO2 function selection	0: Short with physical DIx internally 1-40: Refer to function selection of physical DO in group P5.	0	*
A1-13	VDO3 function selection	0: Short with physical Dix internally 1-40: Refer to function selection of physical DO in group P5.	0	is
A1-14	VDO4 function selection	0: Short with physical Dix internally 1-40: Refer to function selection of physical DO in group P5.	0	\%
A1-15	VDO5 function selection	0: Short with physical Dix internally 1-40: Refer to function selection of physical DO in group P5.	0	\star
A1-16	VDO1 output delay	0.0-3600.0s	0.0s	$\stackrel{*}{*}$
A1-17	VDO2 output delay	0.0-3600.0s	0.0s	\star
A1-18	VDO3 output delay	0.0-3600.0s	0.0s	\%
A1-19	VDO4 output delay	0.0-3600.0s	0.0s	$\stackrel{3}{3}$
A1-20	VDO5 output delay	0.0-3600.0s	0.0s	\star
A1-21	VDO state selection	Unit's digit (VDO1) $0:$ Positive logic 1: Reverse logic Ten's digit (VDO2) 0,1 (same as unit's digit) Hundred's digit (VDO3) 0,1 (same as unit's digit) Thousand's digit (VDO4) 0,1 (same as unit's digit) Ten thousand's digit (VDO5) 0,1 (same as unit's digit)	00000	*

Function Code	Parameter Name	Setting Range	Default	Property
Group A2: Motor 2 Parameters				
A2-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor 2: Permanent magnetic synchronous motor	0	\star
A2-01	Rated motor power	0.1-1000.0 kW	Model dependent	
A2-02	Rated motor voltage	1-2000 V	Model dependent	\star
A2-03	Rated motor current	0.01-655.35 A (AC drive power \leq 55 kW) 0.1-6553.5 A (AC drive power > 55 kW)	Model dependent	\star
A2-04	Rated motor frequency	0.01 Hz to maximum frequency	Model dependent	\star
A2-05	Rated motor rotational speed	1-65535 RPM	Model dependent	\star
A2-06	Stator resistance (asynchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A2-07	Rotor resistance (asynchronous motor)	```0.001-65.535 \Omega (AC drive power \leq55 kW) 0.0001-6.5535 \Omega (AC drive power > 55 kW)```	Model dependent	*
A2-08	Leakage inductive reactance (asynchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH} \text { (AC drive } \\ & \text { power > } 55 \mathrm{~kW} \text {) } \\ & \hline \end{aligned}$	Model dependent	*
A2-09	Mutual inductive reactance (asynchronous motor)	$\begin{aligned} & 0.1-6553.5 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & >55 \mathrm{~kW} \text {) } \end{aligned}$	Model dependent	\star
A2-10	No-load current (asynchronous motor)	0.01 A to A2-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 A to A2-03 (AC drive power > 55 kW)	Model dependent	*
A2-16	Stator resistance (synchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star

Function Code	Parameter Name	Setting Range	Default	Property
A2-17	Shaft D inductance (synchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH} \text { (AC drive } \\ & \text { power > } 55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A2-18	Shaft Q inductance (synchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH} \text { (AC drive } \\ & \text { power > } 55 \mathrm{~kW} \text {) } \end{aligned}$	Model dependent	\star
A2-20	Back EMF (synchronous motor)	0.1-6553.5 V	Model dependent	\star
A2-27	Encoder pulses per revolution	1-65535	1024	\star
A2-28	Encoder type	0 : ABZ incremental encoder 1: UVW incremental encoder 2: Resolver 3: SIN/COS encoder 4: Wire-saving UVW encoder	0	\star
A2-30	A, B phase sequence of ABZ incremental encoder	0: Forward 1: Reserve	0	\star
A2-31	Encoder installation angle	0.0 ${ }^{\circ}-359.9^{\circ}$	0.0°	\star
A2-32	$\mathrm{U}, \mathrm{V}, \mathrm{W}$ phase sequence of UVW encoder	0: Forward 1: Reverse	0	\star
A2-33	UVW encoder angle offset	$0.0^{\circ}-359.9^{\circ}$	0.0°	\star
A2-34	Number of pole pairs of resolver	1-65535	1	\star
A2-36	Encoder wire-break fault detection time	0.0s: No action $0.1-10.0 \mathrm{~s}$	0.0s	\star
A2-37	Auto-tuning selection	0 : No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete auto-tuning 11: Synchronous motor with-load auto-tuning 12: Synchronous motor no-load auto-tuning	0	*
A2-38	Speed loop proportional gain 1	0-100	30	\star
A2-39	Speed loop integral time 1	0.01-10.00s	0.50s	3
A2-40	Switchover frequency 1	0.00 to A2-43	5.00 Hz	\star
A2-41	Speed loop proportional gain 2	0-100	15	3

Function Code	Parameter Name	Setting Range	Default	Property
A2-42	Speed loop integral time 2	0.01-10.00s	1.00s	\star
A2-43	Switchover frequency 2	A2-40 to maximum output frequency	10.00 Hz	T
A2-44	Vector control slip gain	50\%-200\%	100\%	\star
A2-45	Time constant of speed loop filter	0.000-0.100s	0.000s	\%
A2-46	Vector control overexcitation gain	0-200	64	3
A2-47	Torque upper limit source in speed control mode	0: A2-48 1: Al1 2: AI2 3: AI3 4: Pulse setting (DI5) 5: Via communication 6: $\operatorname{MIN}(A 11, A l 2)$ 7: $\operatorname{MIN}(A I 1, A I 2)$	0	*
A2-48	Digital setting of torque upper limit in speed control mode	0.0\%-200.0\%	150.0\%	*
A2-51	Excitation adjustment proportional gain	0-20000	2000	*
A2-52	Excitation adjustment integral gain	0-20000	1300	约
A2-53	Torque adjustment proportional gain	0-20000	2000	约
A2-54	Torque adjustment integral gain	0-20000	1300	*
A2-55	Speed loop integral property	Unit's digit: Integral separated 0: Disabled 1: Enabled	0	T
A2-56	Field weakening mode of synchronous motor	0: No field weakenin 1: Direct calculation 2: Adjustment	0	T
A2-57	Field weakening degree of synchronous motor	50\%-500\%	100\%	*
A2-58	Maximum field weakening current	1\%-300\%	50\%	\%
A2-59	Field weakening automatic adjustment gain	10\%-500\%	100\%	*
A2-60	Field weakening integral multiple	2-10	2	T

Function Code	Parameter Name	Setting Range	Default	Property
A2-61	Motor 2 control mode	0: Sensorless flux vector control (SFVC) 1: Closed-loop vector control (CLVC) 2: Voltage/Frequency (V/F) control	0	\star
A2-62	Motor 2 acceleration/ deceleration time	0: Same as motor 1 1: Acceleration/Deceleration time 1 2: Acceleration/Deceleration time 2 3: Acceleration/Deceleration time 3 4: Acceleration/Deceleration time 4	0	*
A2-63	Motor 2 torque boost	0.0\%: Automatic torque boost 0.1\%-30.0\%	Model dependent	\cdots
A2-65	Motor 2 oscillation suppression gain	0-100	Model dependent	*
Group A3: Motor 3 Parameters				
A3-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor 2: Permanent magnetic synchronous motor	0	\star
A3-01	Rated motor power	0.1-1000.0 kW	Model dependent	\star
A3-02	Rated motor voltage	1-2000 V	Model dependent	\star
A3-03	Rated motor current	0.01-655.35 A (AC drive power \leq 55 kW) 0.1-6553.5 A (AC drive power > 55 kW)	Model dependent	\star
A3-04	Rated motor frequency	0.01 Hz to maximum frequency	Model dependent	\star
A3-05	Rated motor rotational speed	1-65535 RPM	Model dependent	*
A3-06	Stator resistance (asynchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A3-07	Rotor resistance (asynchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star

Function Code	Parameter Name	Setting Range	Default	Property
A3-08	Leakage inductive reactance (asynchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH}(\text { AC drive } \\ & \text { power > } 55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A3-09	Mutual inductive reactance (asynchronous motor)	$0.1-6553.5 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.01-655.35 \mathrm{mH}$ (AC drive power > 55 kW)	Model dependent	\star
A3-10	No-load current (asynchronous motor)	0.01 A to A2-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 A to A2-03 (AC drive power > 55 kW)	Model dependent	\star
A3-16	Stator resistance (synchronous motor)	```0.001-65.535 \Omega (AC drive power \leq55 kW) 0.0001-6.5535\Omega (AC drive power > 55 kW)```	Model dependent	\star
A3-17	Shaft D inductance (synchronous motor)	$0.01-655.35 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.001-65.535 \mathrm{mH}$ (AC drive power > 55 kW)	Model dependent	\star
A3-18	Shaft Q inductance (synchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH}(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	*
A3-20	Back EMF (synchronous motor)	0.1-6553.5 V	Model dependent	\star
A3-27	Encoder pulses per revolution	1-65535	1024	\star
A3-28	Encoder type	0 : ABZ incremental encoder 1: UVW incremental encoder 2: Resolver 3: SIN/COS encoder 4: Wire-saving UVW encoder	0	\star
A3-30	A, B phase sequence of ABZ incremental encoder	0: Forward 1: Reserve	0	\star
A3-31	Encoder installation angle	0.0 ${ }^{\circ}-359.9^{\circ}$	0.0°	\star
A3-32	$\mathrm{U}, \mathrm{V}, \mathrm{W}$ phase sequence of UVW encoder	0 : Forward 1: Reverse	0	\star
А3-33	UVW encoder angle offset	0.0 ${ }^{\circ}-359.9^{\circ}$	0.0°	\star

Function Code	Parameter Name	Setting Range	Default	Property
A3-34	Number of pole pairs of resolver	1-65535	1	ᄎ
A3-36	Encoder wire-break fault detection time	0.0s: No action 0.1-10.0s	0.0s	\star
A3-37	Auto-tuning selection	0 : No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete auto-tuning 11: Synchronous motor with-load auto-tuning 12: Synchronous motor no-load auto-tuning		\star
А3-38	Speed loop proportional gain 1	0-100	30	\star
АЗ-39	Speed loop integral time 1	0.01-10.00s	0.50s	\star
А3-40	Switchover frequency 1	0.00 to A2-43	5.00 Hz	ふ
A3-41	Speed loop proportional gain 2	0-100	15	3
А3-42	Speed loop integral time 2	0.01-10.00s	1.00s	\star
A3-43	Switchover frequency 2	A2-40 to maximum output frequency	10.00 Hz	*
A3-44	Vector control slip gain	50\%-200\%	100\%	\star
A3-45	Time constant of speed loop filter	0.000-0.100s	0.000s	*
A3-46	Vector control overexcitation gain	0-200	64	*
A3-47	Torque upper limit source in speed control mode	$\begin{aligned} & \hline \text { 0: A2-48 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { 4: Pulse setting (DI5) } \\ & \text { 5: Via communication } \\ & \text { 6: MIN (Al1,AI2) } \\ & \text { 7: MAX (Al1,AI2) } \end{aligned}$	0	*
A3-48	Digital setting of torque upper limit in speed control mode	0.0\%-200.0\%	150.0\%	*
A3-51	Excitation adjustment proportional gain	0-20000	2000	呇
A3-52	Excitation adjustment integral gain	0-20000	1300	*

Function Code	Parameter Name	Setting Range	Default	Property
A3-53	Torque adjustment proportional gain	0-20000	2000	T
A3-54	Torque adjustment integral gain	0-20000	1300	\%
A3-55	Speed loop integral property	Unit's digit: Integral separated 0 : Disabled 1: Enabled	0	W
A3-56	Field weakening mode of synchronous motor	0: No field weakenin 1: Direct calculation 2: Adjustment	0	*
A3-57	Field weakening degree of synchronous motor	50\%-500\%	100\%	\%
A3-58	Maximum field weakening current	1\%-300\%	50\%	*
A3-59	Field weakening automatic adjustment gain	10\%-500\%	100\%	*
A3-60	Field weakening integral multiple	2-10	2	约
A3-61	Motor 2 control mode	0 : Sensorless flux vector control (SFVC) 1: Closed-loop vector control (CLVC) 2: Voltage/Frequency (V/F) control	0	T
A3-62	Motor 2 acceleration/ deceleration time	0 : Same as motor 1 1: Acceleration/Deceleration time 1 2: Acceleration/Deceleration time 2 3: Acceleration/Deceleration time 3 4: Acceleration/Deceleration time 4	0	*
A3-63	Motor 2 torque boost	0.0\%: Automatic torque boost $0.1 \%-30.0 \%$	Model dependent	*
A3-65	Motor 2 oscillation suppression gain	0-100	Model dependent	*
Group A4: Motor 4 Parameters				
A4-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor 2: Permanent magnetic synchronous motor	0	\star
A4-01	Rated motor power	$0.1-1000.0$ kW	Model dependent	\star

Function Code	Parameter Name	Setting Range	Default	Property
A4-02	Rated motor voltage	1-2000 V	Model dependent	*
A4-03	Rated motor current	0.01-655.35 A (AC drive power \leq 55 kW) 0.1-6553.5 A (AC drive power > 55 kW)	Model dependent	\star
A4-04	Rated motor frequency	0.01 Hz to maximum frequency	Model dependent	\star
A4-05	Rated motor rotational speed	1-65535 RPM	Model dependent	\star
A4-06	Stator resistance (asynchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A4-07	Rotor resistance (asynchronous motor)	$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A4-08	Leakage inductive reactance (asynchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH}(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \\ & \hline \end{aligned}$	Model dependent	*
A4-09	Mutual inductive reactance (asynchronous motor)	$\begin{aligned} & 0.1-6553.5 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & >55 \mathrm{~kW} \text {) } \end{aligned}$	Model dependent	\star
A4-10	No-load current (asynchronous motor)	0.01 A to A2-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 A to A2-03 (AC drive power > 55 kW)	Model dependent	\star
A4-16		$\begin{aligned} & 0.001-65.535 \Omega(\text { AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.0001-6.5535 \Omega(\text { AC drive } \\ & \text { power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A4-17	Shaft D inductance (synchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH}(\text { AC drive } \\ & \text { power > } 55 \mathrm{~kW}) \end{aligned}$	Model dependent	\star
A4-18	Shaft Q inductance (synchronous motor)	$\begin{aligned} & 0.01-655.35 \mathrm{mH} \text { (AC drive power } \\ & \leq 55 \mathrm{~kW}) \\ & 0.001-65.535 \mathrm{mH} \text { (AC drive } \\ & \text { power > } 55 \mathrm{~kW}) \\ & \hline \end{aligned}$	Model dependent	\star

Function Code	Parameter Name	Setting Range	Default	Property
A4-20	Back EMF (synchronous motor)	$0.1-6553.5 \mathrm{~V}$	Model dependent	\star
A4-27	Encoder pulses per revolution	1-65535	1024	\star
A4-28	Encoder type	0 : ABZ incremental encoder 1: UVW incremental encoder 2: Resolver 3: SIN/COS encoder 4: Wire-saving UVW encoder	0	\star
A4-30	A, B phase sequence of ABZ incremental encoder	0: Forward 1: Reserve	0	\star
A4-31	Encoder installation angle	$0.0^{\circ}-359.9^{\circ}$	$0.0{ }^{\circ}$	\star
A4-32	$\mathrm{U}, \mathrm{V}, \mathrm{W}$ phase sequence of UVW encoder	0 : Forward 1: Reverse	0	\star
A4-33	UVW encoder angle offset	$0.0^{\circ}-359.9^{\circ}$	0.0°	\star
A4-34	Number of pole pairs of resolver	1-65535	1	\star
A4-36	Encoder wire-break fault detection time	0.0s: No action $0.1-10.0 \mathrm{~s}$	0.0s	\star
A4-37	Auto-tuning selection	0 : No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete auto-tuning 11: Synchronous motor with-load auto-tuning 12: Synchronous motor no-load auto-tuning	0	\star
A4-38	Speed loop proportional gain 1	0-100	30	\star
A4-39	Speed loop integral time 1	0.01-10.00s	0.50s	3
A4-40	Switchover frequency 1	0.00 to A2-43	5.00 Hz	动
A4-41	Speed loop proportional gain 2	0-100	15	\%
A4-42	Speed loop integral time 2	0.01-10.00s	1.00s	3
A4-43	Switchover frequency 2	A2-40 to maximum output frequency	10.00 Hz	约
A4-44	Vector control slip gain	50\%-200\%	100\%	3
A4-45	Time constant of speed loop filter	0.000-0.100s	0.000s	*

Function Code	Parameter Name	Setting Range	Default	Property
A4-46	Vector control overexcitation gain	0-200	64	H
A4-47	Torque upper limit source in speed control mode	$\begin{aligned} & \text { 0: A2-48 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { 4: Pulse setting (DI5) } \\ & \text { 5: Via communication } \\ & \text { 6: MIN(Al1,AI2) } \\ & \text { 7: MIN(AI1,AI2) } \end{aligned}$	0	¿
A4-48	Digital setting of torque upper limit in speed control mode	0.0\%-200.0\%	150.0%	\star
A4-51	Excitation adjustment proportional gain	0-20000	2000	H
A4-52	Excitation adjustment integral gain	0-20000	1300	H
A4-53	Torque adjustment proportional gain	0-20000	2000	\star
A4-54	Torque adjustment integral gain	0-20000	1300	\star
A4-55	Speed loop integral property	Unit's digit: Integral separated 0 : Disabled 1: Enabled	0	H
A4-56	Field weakening mode of synchronous motor	$\begin{aligned} & \text { 0: No field weakenin } \\ & \text { 1: Direct calculation } \\ & \text { 2: Adjustment } \end{aligned}$	0	\star
A4-57	Field weakening degree of synchronous motor	50\%-500\%	100\%	\star
A4-58	Maximum field weakening current	1\%-300\%	50\%	\star
A4-59	Field weakening automatic adjustment gain	10\%-500\%	100\%	\star
A4-60	Field weakening integral multiple	2-10	2	3
A4-61	Motor 2 control mode	0 : Sensorless flux vector control (SFVC) 1: Closed-loop vector control (CLVC) 2: Voltage/Frequency (V/F) control	0	*

Function Code	Parameter Name	Setting Range	Default	Property
A4－62	Motor 2 acceleration／ deceleration time	0：Same as motor 1 1：Acceleration／Deceleration time 1 2：Acceleration／Deceleration time 2 3：Acceleration／Deceleration time 3 4：Acceleration／Deceleration time 4	0	T
A4－63	Motor 2 torque boost	0.0% ：Automatic torque boost $0.1 \%-30.0 \%$	Model dependent	
A4－65	Motor 2 oscillation suppression gain	0－100	Model dependent	\pm
Group A5：Control Optimization Parameters				
A5－00	DPWM switchover frequency upper limit	$0.00-15.00 \mathrm{~Hz}$	12.00 Hz	T
A5－01	PWM modulation mode	0：Asynchronous modulation 1：Synchronous modulation	0	呇
A5－02	Dead zone compensation mode selection	0 ：No compensation 1：Compensation mode 1 2：Compensation mode 2	1	\％
A5－03	Random PWM depth	0：Random PWM invalid 1-10	0	T
A5－04	Rapid current limit	0：Disabled1：Enabled	1	＊
A5－05	Current detection compensation	0－100	5	＊
A5－06	Undervoltage threshold	60．0\％－140．0\％	100．0\％	§
A5－07	SFVC optimization mode selection	0：No optimization 1：Optimization mode 1 2：Optimization mode 2	1	约
A5－08	Dead－zone time adjustment	100\％－200\％	150\％	＊
A5－09	Overvoltage threshold	200．0－2500．0 V	2000.0 V	\％
Group A6：AI Curve Setting				
A6－00	Al curve 4 minimum input	－10．00 V to A6－02	0.00 V	N
A6－01	Corresponding setting of AI curve 4 minimum input	－100．0\％－100．0\％	0．0\％	＊
A6－02	Al curve 4 inflexion 1 input	A6－00 to A6－04	3.00 V	\star
A6－03	Corresponding setting of AI curve 4 inflexion 1 input	－100．0\％－100．0\％	30．0\％	T
A6－04	Al curve 4 inflexion 1 input	A6－02 to A6－06	6.00 V	\star
A6－05	Corresponding setting of AI curve 4 inflexion 1 input	－100．0\％－100．0\％	60．0\％	洮
A6－06	Al curve 4 maximum input	A6－06 to 10.00 V	10.00 V	\star

Function Code	Parameter Name	Setting Range	Default	Property
A6-07	Corresponding setting of AI curve 4 maximum input	-100.0\%-100.0\%	100.0\%	*
A6-08	Al curve 5 minimum input	-10.00 V to A6-10	0.00 V	3
A6-09	Corresponding setting of AI curve 5 minimum input	-100.0\%-100.0\%	0.0\%	\cdots
A6-10	Al curve 5 inflexion 1 input	A6-08 to A6-12	3.00 V	3
A6-11	Corresponding setting of AI curve 5 inflexion 1 input	-100.0\%-100.0\%	30.0\%	+
A6-12	Al curve 5 inflexion 1 input	A6-10 to A6-14	6.00 V	H
A6-13	Corresponding setting of AI curve 5 inflexion 1 input	-100.0\%-100.0\%	60.0\%	*
A6-14	Al curve 5 maximum input	A6-14 to 10.00 V	10.00 V	\rangle
A6-15	Corresponding setting of AI curve 5 maximum input	-100.0\%-100.0\%	100.0\%	N
A6-16	Jump point of Al1 input corresponding setting	-100.0\%-100.0\%	0.0\%	*
A6-17	Jump amplitude of Al1 input corresponding setting	0.0\%-100.0\%	0.5\%	*
A6-18	Jump point of Al2 input corresponding setting	-100.0\%-100.0\%	0.0\%	N
A6-19	Jump amplitude of Al2 input corresponding setting	0.0\%-100.0\%	0.5\%	\%
A6-20	Jump point of Al3 input corresponding setting	-100.0\%-100.0\%	0.0\%	\star
A6-21	Jump amplitude of AI3 input corresponding setting	0.0\%-100.0\%	0.5\%	*

Chapter 5 Description of Function Codes

Group P0: Basic Parameters

Function Code	Parameter Name	Setting Range	Default
P0-00	G/P type display	1: G type (constant torque load) 2: P type (variable torque load e.g. fan and pump)	Model dependent

This parameter is used to display the delivered model and cannot be modified

- 1: Applicable to constant torque load with rated parameters specifie
- 2: Applicable to variable torque load (fan and pump) with rated parameters specifie

Function Code	Parameter Name	Setting Range	Default
P0-01	Motor 1 control	0: Sensorless flux vector control (SFVC)	
	mode	1: Closed-loop vector control (CLVC)	0
	2: Voltage/Frequency (V/F) control		

- 0: Sensorless flux vector control (SFVC

It indicates open-loop vector control, and is applicable to high-performance control applications such as machine tool, centrifuge, wire drawing machine and injection moulding machine. One AC drive can operate only one motor.

- 1: Closed-loop vector control (CLVC)

It is applicable to high-accuracy speed control or torque control applications such as high-speed paper making machine, crane and elevator. One AC drive can operate only one motor. An encoder must be installed at the motor side, and a PG card matching the encoder must be installed at the AC drive side.

- 2: Voltage/Frequency (V/F) control

It is applicable to applications with low load requirements or applications where one AC drive operates multiple motors, such as fan and pump.

[^0]| Function Code | Parameter Name | Setting Range | Default |
| :---: | :--- | :--- | :---: |
| P0-02 | Command
 source selection | 0: Operation panel control (LED off)
 1: Terminal control (LED on)
 2: Communication control (LED blinking) | 0 |

It is used to determine the input channel of the AC drive control commands, such as run, stop, forward rotation, reverse rotation and jog operation. You can input the commands in the following three channels:

- 0: Operation panel control ("LOCAL/REMOT" indicator off)

Commands are given by pressing keys RUN and $\frac{\text { RSTP }}{\text { RST }}$ on the operation panel.

- 1: Terminal control ("LOCAL/REMOT" indicator on)

Commands are given by means of multifunctional input terminals with functions such as FWD, REV, JOGF, and JOGR.

- 2: Communication control ("LOCAL/REMOT" indicator blinking)

Commands are given from host computer. If this parameter is set to 2 , a communication card (Modbus RTU, PROFIBUS-DP card, CANlink card, user programmable card or CANopen card) must be installed.

- If a PROFIBUS-DP card is selected and PZD1 data is valid, commands are given by means of PZD1 data.
- If a user programmable card is selected, commands are written to A7-08 by means of the programmable card.
- If any other card is selected, commands are written by means of the communication address 0×2000.

Function Code	Parameter Name	Setting Range	Default
PO-03	Main frequency source X selection	0: Digital setting (non-retentive at power failure) 1: Digital setting (retentive at power failure) 2: Al1 3: AI2 4: Al3 5: Pulse setting (DI5) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication setting	0

It is used to select the setting channel of the main frequency. You can set the main frequency in the following 10 channels:

- 0 : Digital setting (non-retentive at power failure)

The initial value of the set frequency is the value of P0-08 (Preset frequency). You can change the set frequency by pressing Δ and ∇ on the operation panel (or using the UP/DOWN function of input terminals).

When the AC drive is powered on again after power failure, the set frequency reverts to the value of P0-08.

- 1: Digital setting (retentive at power failure)

The initial value of the set frequency is the value of P0-08 (Preset frequency). You can change the set frequency by pressing keys \triangle and ∇ on the operation panel (or using the UP/DOWN function of input terminals).

When the AC drive is powered on again after power failure, the set frequency is the value memorized at the moment of the last power failure.

Note that P0-23 (Retentive of digital setting frequency upon power failure) determines whether the set frequency is memorized or cleared when the AC drive stops. It is related to stop rather than power failure.

- 2: AI1 (0-10 V voltage input)
- 3: Al2 (0-10 V voltage input or 4-20 mA current input, determined by jumper J8)
- 4: Al3 (0-10 V voltage input)

The frequency is set by analog input. The G1100 control board provides two analog input (AI) terminals (AI1, AI2). Another AI terminal (AI3) is provided by the I/O extension card.
The G1100 provides fve curves indicating the mapping relationship between the input voltage of AI1, AI2 and Al3 and the target frequency, three of which are linear (point-point) correspondence and two of which are four-point correspondence curves. You can set the curves by using function codes P4-13 to P4-27 and function codes in group A6, Sand select curves for Al1, Al2 and Al3 in P4-33.
When Al is used as the frequency setting source, the corresponding value 100% of the voltage/current input corresponds to the value of P0-10 (Maximum frequency).

- 5: Pulse setting (DI5)

The frequency is set by DI5 (high-speed pulse). The signal specification of pulse setting is $9-30 \mathrm{~V}$ (voltage range) and $0-100 \mathrm{kHz}$ (frequency range). The corresponding value 100% of pulse setting corresponds to the value of P0-10 (Maximum frequency).

- 6: Multi-reference

In multi-reference mode, combinations of different DI terminal states correspond to different set frequencies. The G1100 supports a maximum of 16 speeds implemented by 16 state combinations of four DI terminals (allocated with functions 12 to 15) in Group PC. The multiple references indicate percentages of the value of P0-10 (Maximum frequency).

If a DI terminal is used for the multi-reference function, you need to perform related setting in group P4.

- 7: Simple PLC

When the simple programmable logic controller (PLC) mode is used as the frequency source, the running frequency of the AC drive can be switched over among the 16 frequency references. You can set the holding time and acceleration/deceleration time of the 16 frequency references. For details, refer to the descriptions of Group PC.

- 8: PID

The output of PID control is used as the running frequency. PID control is generally used in on-site closed-loop control, such as constant pressure closed-loop control and constant tension closed-loop control.

When applying PID as the frequency source, you need to set parameters of PID function in group PA.

- 9: Communication setting

The frequency is set by means of communication.
If the $A C$ drive is a slave in point-point communication and receives data as the frequency source, data transmitted by the master is used as the set frequency. For details, see the description of group A8.

If PROFIBUS-DP communication is valid and PZD1 is used for frequency setting, data transmitted by PDZ1 is directly used as the frequency source. The data format is -100.00% to 100.00%. 100% corresponds to the value of P0-10 (Maximum frequency).

In other conditions, data is given by the host computer through the communication address 0×1000. The data format is -100.00% to 100.00%. 100.00% corresponds to the value of P0-10 (Maximum frequency).

The MD380 supports four host computer communication protocols: Modbus, PROFIBUS-DP, CANopen and CANlink. They cannot be used simultaneously.

If the communication mode is used, a communication card must be installed. The UNIQUE-G1100 provides four optional communication cards and you can select one based on actual requirements. If the communication protocol is Modbus, PROFIBUSDP or CANopen, the corresponding serial communication protocol needs to be selected based on the setting of P0-28.

The CANlink protocol is always valid.

Function Code	Parameter Name	Setting Range	Default
		0: Digital setting (non-retentive at power failure)	
		1: Digital setting (retentive at power failure)	
		2: Al1	
P0-04	Auxiliary	3: Al2	
	frequency source	4: Al3	
		5: Pulse setting (DI5)	
		6: Multi-reference	
		7: Simple PLC	
		8: PID	
		9: Communication setting	

When used as an independent frequency input channel (frequency source switched over from X to Y), the auxiliary frequency source Y is used in the same way as the main frequency source X (refer to P0-03).

When the auxiliary frequency source is used for operation (frequency source is " X and Y operation"), pay attention to the following aspects:

1) If the auxiliary frequency source Y is digital setting, the preset frequency (P0-08) does not take effect. You can directly adjust the set main frequency by pressing keys \triangle and on the operation panel (or using the UP/DOWN function of input terminals).
2) If the auxiliary frequency source is analog input ($\mathrm{Al} 1, \mathrm{Al} 2$ and Al 3) or pulse setting, 100% of the input corresponds to the range of the auxiliary frequency Y (set in P0-05 and P0-06).
3) If the auxiliary frequency source is pulse setting, it is similar to analog input.

The main frequency source X and auxiliary frequency source Y must not use the same channel. That is, $\mathrm{P} 0-03$ and $\mathrm{P} 0-04$ cannot be set to the same value.

Function Code	Parameter Name	Setting Range	Default
P0-05	Range of auxiliary frequency Y for X and Y operation	0: Relative to maximum frequency 1: Relative to main frequency X	0
P0-06	Range of auxiliary frequency Y for X and Y operation	$0 \%-150 \%$	0

If X and Y operation is used, P0-05 and P0-06 are used to set the adjustment range of the auxiliary frequency source.

You can set the auxiliary frequency to be relative to either maximum frequency or main frequency X. If relative to main frequency X, the setting range of the auxiliary frequency Y varies according to the main frequency X.

It is used to select the frequency setting channel. If the frequency source involves X and Y operation, you can set the frequency offset in $\mathrm{P} 0-21$ for superposition to the X and Y operation result, flexibly satisfying various requirements
Figure 5-1 Frequency setting based on main frequency source X and auxiliary frequency source Y

Function Code	Parameter Name	Setting Range	Default
P0-08	Preset frequency	0.00 to maximum frequency (valid when frequency source is digital setting)	50 Hz

If the frequency source is digital setting or terminal UP/DOWN, the value of this parameter is the initial frequency of the AC drive (digital setting).

Function Code	Parameter Name	Setting Range	Default
P0-09	Rotation direction	0: Same direction 1: Reverse direction	0

You can change the rotation direction of the motor just by modifying this parameter without changing the motor wiring. Modifying this parameter is equivalent to exchanging any two of the motor's $\mathrm{U}, \mathrm{V}, \mathrm{W}$ wires.

The motor will resume running in the original direction after parameter initialization. Do not use this function in applications where changing the rotating direction of the motor is prohibited after system commissioning is complete.

Function Code	Parameter Name	Setting Range	Default
P0-10	Maximum frequency	$50.00-320.00 \mathrm{~Hz}$	50.00 Hz

When the frequency source is Al , pulse setting (DI5), or multi-reference, 100% of the input corresponds to the value of this parameter.

The output frequency of the G1100 can reach up to 3200 Hz . To take both frequency reference resolution and frequency input range into consideration, you can set the number of decimal places for frequency reference in P0-22.

- If P0-22 is set to 1 , the frequency reference resolution is 0.1 Hz . In this case, the setting range of P0-10 is 50.0 to 3200.0 Hz .
- If P0-22 is set to 2, the frequency reference resolution is 0.01 Hz . In this case, the setting range of $\mathrm{PO}-10$ is 50.00 to 320.00 Hz .

Note

After the value of P0-22 is modified, the frequency resolution of all frequency related function codes change accordingly.

Function Code	Parameter Name	Setting Range	Default
		0: Set by F0-12	
		1: Al1	
		2: Al2	
	Pource of frequency upper limit	3: Al3	0
		4: Pulse setting (DI5)	
		5: Communication	
		setting	

It is used to set the source of the frequency upper limit, including digital setting (P0-12), AI, pulse setting or communication setting. If the frequency upper limit is set by means of Al1, $\mathrm{Al} 2, \mathrm{Al} 3$, DI 5 or communication, the setting is similar to that of the main frequency source X . For details, see the description of P0-03.

For example, to avoid runaway in torque control mode in winding application, you can set the frequency upper limit by means of analog input. When the AC drive reaches the upper limit, it will continue to run at this speed.

Function Code	Parameter Name	Setting Range	Default
P0-12	Frequency upper limit	Frequency lower limit (P0-14) to maximum frequency (P0-10)	50.00 Hz

This parameter is used to set the frequency upper limit.

Function Code	Parameter Name	Setting Range	Default
P0-13	Frequency upper limit offset	0.00 Hz to maximum frequency $(\mathrm{PO} 0-10)$	0.00 Hz

If the source of the frequency upper limit is analog input or pulse setting, the final frequency upper limit is obtained by adding the offset in this parameter to the frequency upper limit set in $\mathrm{P} 0-11$.

Function Code	Parameter Name	Setting Range	Default
P0-14	Frequency lower limit	0.00 Hz to frequency upper limit (P0-12)	0.00 Hz

If the frequency reference is lower than the value of this parameter, the AC drive can stop, run at the frequency lower limit, or run at zero speed, determined by P8-14.

Function Code	Parameter Name	Setting Range	Default
P0-15	Carrier frequency	$0.5-16.0 \mathrm{kHz}$	Model dependent

It is used to adjust the carrier frequency of the AC drive, helping to reduce the motor noise, avoiding the resonance of the mechanical system, and reducing the leakage current to the earth and interference generated by the AC drive.

If the carrier frequency is low, output current has high harmonics, and the power loss and temperature rise of the motor increase.

If the carrier frequency is high, power loss and temperature rise of the motor declines. However, the AC drive has an increase in power loss, temperature rise and interference.

Adjusting the carrier frequency will exert influences on the aspects listed in the following table.

Carrier frequency	Low	High
Motor noise	Large	Small
Output current waveform	Bad	Good
Motor temperature rise	High	Low
AC drive temperature rise	Low	High
Leakage current	Small	Large
External radiation interference	Small	Large

The factory setting of carrier frequency varies with the AC drive power. If you need to modify the carrier frequency, note that if the set carrier frequency is higher than factory setting, it will lead to an increase in temperature rise of the AC drive's heatsink. In this case, you need to de-rate the AC drive. Otherwise, the AC drive may overheat and alarm.

Function Code	Parameter Name	Setting Range	Default
P0-16	Carrier frequency adjustment with temperature	0: No $1:$ Yes	1

It is used to set whether the carrier frequency is adjusted based on the temperature. The AC drive automatically reduces the carrier frequency when detecting that the heatsink temperature is high. The AC drive resumes the carrier frequency to the set value when the heatsink temperature becomes normal. This function reduces the overheat alarms.

Function Code	Parameter Name	Setting Range	Default
		$0.00-650.00 \mathrm{~s}(\mathrm{PO}-19=2)$	Model dependent
P0-17	Acceleration time 1	$0.0-6500.0 \mathrm{~s}(\mathrm{P0}-19=1)$	
		$0-65000 \mathrm{~s}(\mathrm{P0} 0-19=0)$	Model dependent
		$0.00-650.00 \mathrm{~s}(\mathrm{P0}-19=2)$	

Acceleration time indicates the time required by the AC drive to accelerate from 0 Hz to "Acceleration/Deceleration base frequency" (P0-25), that is, t 1 in Figure 5-2.

Deceleration time indicates the time required by the AC drive to decelerate from "Acceleration/Deceleration base frequency" (P0-25) to 0 Hz , that is, t2 in Figure 5-2.

Figure 5-2 Acceleration/Deceleration time

The G1100 provides totally four groups of acceleration/deceleration time for selection. You can perform switchover by using a DI terminal.

- Group 1: P0-17, P0-18
- Group 2: P8-03, P8-04
- Group 3: P8-05, P8-06
- Group 4: P8-07, P8-08

Function Code	Parameter Name	Setting Range	Default
P0-19	Acceleration/Deceleration time unit	$0: 1 \mathrm{~s}$	$1: 0.1 \mathrm{~s}$
		$2: 0.01 \mathrm{~s}$	1

To satisfy requirements of different applications, the G1100 provides three acceleration/ deceleration time units, $1 \mathrm{~s}, 0.1 \mathrm{~s}$ and 0.01 s .
\qquad
Modifying this parameter will make the displayed decimal places change and corresponding acceleration/deceleration time also change.

Function Code	Parameter Name	Setting Range	Default
P0-21	Frequency offset of auxiliary frequency source for X and Y operation	0.00 Hz to maximum frequency (F0-10)	0.00 Hz

This parameter is valid only when the frequency source is set to " X and Y operation". The final frequency is obtained by adding the frequency offset set in this parameter to the X and Y operation result.

Function Code	Parameter Name	Setting Range	Default
P0-22	Frequency reference resolution	$1: 0.1 \mathrm{~Hz}$	2
		$2: 0.01 \mathrm{~Hz}$	2

It is used to set the resolution of all frequency-related parameters.
If the resolution is 0.1 Hz , the G1100 can output up to 3200 Hz . If the resolution is 0.01 Hz , the G1100 can output up to 600.00 Hz .

Note

- Modifying this parameter will make the decimal places of all frequency-related parameters change and corresponding frequency values change.
- This parameter is not resumed when factory setting is resumed.

Function Code	Parameter Name	Setting Range	Default
P0-23	Retentive of digital setting frequency upon power failure	0: Not retentive 1: Retentive	0

This parameter is valid only when the frequency source is digital setting.
If P0-23 is set to 0 , the digital setting frequency value resumes to the value of P0-08 (Preset frequency) after the AC drive stops. The modification by using keys Δ and ∇ or the terminal UP/DOWN function is cleared.

If P0-23 is set to 1 , the digital setting frequency value is the set frequency at the moment when the AC drive stops. The modification by using keys Δ and ∇ or the terminal UP/ DOWN function remains effective.

Function Code	Parameter Name	Setting Range	Default
P0-24	Motor parameter group		
	0: Motor parameter group 1 1: Motor parameter group 2 2: Motor parameter group 3 3: Motor parameter group 4	0	

The G1100 can drive four motors at different time. You can set the motor nameplate parameters respectively, independent motor auto-tuning, different control modes, and parameters related to running performance respectively for the four motors.

Motor parameter group 1 corresponds to groups P1 and P2. Motor parameter groups 2, 3 and 4 correspond to groups A2, A3 and A4 respectively.

You can select the current motor parameter group by using P0-24 or perform switchover between the motor parameter groups by means of a DI terminal. If motor parameters selected by means of P0-24 conflict with those selected by means of DI terminal, the selection by DI is preferred.

Function Code	Parameter Name	Setting Range	Default
P0-25	Acceleration/Deceleration time base frequency	0: Maximum frequency (P0-10) 1: Set frequency 2: 100 Hz	0

The acceleration/deceleration time indicates the time for the AC drive to increase from 0 Hz to the frequency set in $\mathrm{P} 0-25$. If this parameter is set to 1 , the acceleration/deceleration time is related to the set frequency. If the set frequency changes frequently, the motor's acceleration/deceleration also changes.

Function Code	Parameter Name	Setting Range	Default
P0-26	Base frequency for UP/DOWN modification during running	0: Running frequency 1: Set frequency	0

This parameter is valid only when the frequency source is digital setting.
It is used to set the base frequency to be modified by using keys Δ and ∇ or the terminal UP/DOWN function. If the running frequency and set frequency are different, there will be a large difference between the AC drive's performance during the acceleration/ deceleration process.

Function Code	Parameter Name	Setting Range	Default
P0-27	Binding command source to frequency source	Unit's digit (Binding operation panel command to frequency source)	000
		0 : No binding	
		1: Frequency source by digital setting	
		3: Al2	
		4: Al3	
		5: Pulse setting (DI5)	
		6: Multi-reference	
		7: Simple PLC	
		8: PID	
		9: Communication setting	
		Ten's digit (Binding terminal command to frequency source)	
		0-9, same as unit's digit	
		Hundred's digit (Binding communication command to frequency source)	
		$0-9$, same as unit's digit)	

It is used to bind the three running command sources with the nine frequency sources, facilitating to implement synchronous switchover.
For details on the frequency sources, see the description of P0-03 (Main frequency source X selection). Different running command sources can be bound to the same frequency source.

If a command source has a bound frequency source, the frequency source set in P0-03 to P0-07 no longer takes effect when the command source is effective.

Function Code	Parameter Name	Setting Range	Default
	Serial communication protocol	0: Modbus protocol 1: PROFIBUS-DP bridge P0-28	0

The G1100 supports Modbus, PROFIBUS-DP bridge and CANopen bridge. Select a proper protocol based on the actual requirements.

Group P1: Motor 1 Parameters GROUP

Function Code	Parameter Name	Setting Range	Default
P1-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor 2: Permanent magnetic synchronous motor	1
P1-01	Rated motor power	$0.1-1000.0 \mathrm{~kW}$	Model dependent
P1-02	Rated motor voltage	$1-2000 \mathrm{~V}$	Model dependent
P1-03	Rated motor current	$0.01-655.35 \mathrm{~A}($ AC drive power $\leq 55 \mathrm{~kW})$ $0.1-6553.5 \mathrm{~A}(\mathrm{AC}$ drive power $>55 \mathrm{~kW})$	Model dependent
P1-04	Rated motor frequency	0.01 Hz to maximum frequency	Model dependent
P1-05	Rated motor rotational speed	$1-65535 \mathrm{RPM}$	Model dependent

Set the parameters according to the motor nameplate no matter whether V/F control or vector control is adopted.

To achieve better V/F or vector control performance, motor auto-tuning is required. The motor auto-tuning accuracy depends on the correct setting of motor nameplate parameters.

Function Code	Parameter Name	Setting Range	Default
P1-06	Stator resistance (asynchronous motor)	$0.001-65.535 \Omega($ AC drive power $\leq 55 \mathrm{~kW})$ $0.0001-6.5535 \Omega($ AC drive power $>55 \mathrm{~kW})$	Model dependent
P1-07	Rotor resistance (asynchronous motor)	$0.001-65.535 \Omega($ AC drive power $\leq 55 \mathrm{~kW})$ $0.0001-6.5535 \Omega($ AC drive power $>55 \mathrm{~kW})$	Model dependent
P1-08	Leakage inductive reactance (asynchronous motor)	$0.01-655.35 \mathrm{mH}(\mathrm{AC}$ drive power $\leq 55 \mathrm{~kW})$ $0.001-65.535 \mathrm{mH}($ AC drive power $>55 \mathrm{~kW})$	Model dependent

Function Code	Parameter Name	Setting Range	Default
P1-09	Mutual inductive reactance (asynchronous motor)	$0.1-6553.5 \mathrm{mH}($ AC drive power $\leq 55 \mathrm{~kW})$	Model dependent
P1-10	No-load current (asynchronous motor)	0.01 to P1-03 (AC drive power $\leq 55 \mathrm{~kW})$ 0.1 to P1-03 (AC drive power $>55 \mathrm{~kW})$	Model dependent

The parameters in P1-06 to P1-10 are asynchronous motor parameters. These parameters are unavailable on the motor nameplate and are obtained by means of motor auto-tuning. Only P1-06 to P1-08 can be obtained through static motor auto-tuning. Through complete motor auto-tuning, encoder phase sequence and current loop PI can be obtained besides the parameters in P1-06 to P1-10.

Each time "Rated motor power" (P1-01) or "Rated motor voltage" (P1-02) is changed, the AC drive automatically restores values of P1-06 to $\mathrm{P} 1-10$ to the parameter setting for the common standard Y series asynchronous motor.

If it is impossible to perform motor auto-tuning onsite, manually input the values of these parameters according to data provided by the motor manufacturer.

Function Code	Parameter Name	Setting Range	Default
P1-16	Stator resistance (synchronous motor)	$0.001-65.535 \Omega($ AC drive power $\leq 55 \mathrm{~kW})$ $0.0001-6.5535 \Omega($ AC drive power $>55 \mathrm{~kW})$	Model dependent
P1-17	Shaft D inductance (synchronous motor)	$0.01-655.35 \mathrm{mH}($ AC drive power $\leq 55 \mathrm{~kW})$ $0.001-65.535 \mathrm{mH}($ AC drive power $>55 \mathrm{~kW})$	Model dependent
P1-18	Shaft Q inductance	$0.01-655.35 \mathrm{mH}($ AC drive power $\leq 55 \mathrm{~kW})$	Model (synchronous motor)
$0.001-65.535 \mathrm{mH}($ AC drive power $>55 \mathrm{~kW})$	dependent		

P1-16 to P1-20 are synchronous motor parameters. These parameters are unavailable on the nameplate of most synchronous motors and can be obtained by means of "Synchronous motor no-load auto-tuning". Through "Synchronous motor with-load auto-tuning", only the encoder phase sequence and installation angle can be obtained.

Each time "Rated motor power" (P1-01) or "Rated motor voltage" (P1-02) is changed, the AC drive automatically modifes the values of P1-16 to P1-20.

You can also directly set the parameters based on the data provided by the synchronous motor manufacturer.

Function Code	Parameter Name	Setting Range	Default
P1-27	Encoder pulses per revolution	1-65535	1024

This parameter is used to set the pulses per revolution (PPR) of ABZ or UVW incremental encoder. In CLVC mode, the motor cannot run properly if this parameter is set incorrectly.

Function Code	Parameter Name	Setting Range	Default
		0: ABZ incremental encoder	
P1-28	Encoder type	1: UVW incremental encoder	
		2: Resolver	0
		3: SIN/COS encoder	
	4: Wire-saving UVW encoder		

The G1100 supports multiple types of encoder. Different PG cards are required for different types of encoder. Select the appropriate PG card for the encoder used. Any of the five encoder types is applicable to synchronous motor. Only ABZ incremental encode Ur and resolver are applicable to asynchronous motor.

After installation of the PG card is complete, set this parameter properly based on the actual condition. Otherwise, the AC drive cannot run properly.

Function Code	Parameter Name	Setting Range	Default
P1-30	A/B phase sequence of ABZ incremental encoder	0: Forward 1: Reserve	0

This parameter is valid only for ABZ incremental encoder (P1-28 = 0) and is used to set the A / B phase sequence of the $A B Z$ incremental encoder.

It is valid for both asynchronous motor and synchronous motor. The A/B phase sequence can be obtained through "Asynchronous motor complete auto-tuning" or "Synchronous motor no-load auto-tuning".

Function Code	Parameter Name	Setting Range	Default
P1-31	Encoder installation angle	$0.0^{\circ}-359.9^{\circ}$	0.0°

This parameter is applicable only to synchronous motor. It is valid for ABZ incremental encoder, UVW incremental encoder, resolver and wire-saving UVW encoder, but invalid for SIN/COS encoder.

It can be obtained through synchronous motor no-load auto-turning or with-load auto-tuning. After installation of the synchronous motor is complete, the value of this parameter must be obtained by motor auto-tuning. Otherwise, the motor cannot run properly.

Function Code	Parameter Name	Setting Range	Default
P1-32	U, V, W phase sequence of UVW encoder	$0:$ Forward $1:$ Reverse	0
P1-33	UVW encoder angle offset	$0.0^{\circ}-359.9^{\circ}$	0.0°

These two parameters are valid only when the UVW encoder is applied to a synchronous motor. They can be obtained by synchronous motor no-load auto-tuning or with-load autotuning. After installation of the synchronous motor is complete, the values of these two parameters must be obtained by motor auto-tuning. Otherwise, the motor cannot run properly.

Function Code	Parameter Name	Setting Range	Default
P1-34	Number of pole pairs of resolver	$1-65535$	1

If a resolver is applied, set the number of pole pairs properly.

Function Code	Parameter Name	Setting Range	Default
P1-36	Encoder wire-break fault detection time	$0.0 \mathrm{~s}:$ No action $0.1-10.0 \mathrm{~s}$	0.0 s

This parameter is used to set the time that a wire-break fault lasts. If it is set to 0.0 s , the AC drive does not detect the encoder wire-break fault. If the duration of the encoder wire-break fault detected by the AC drive exceeds the time set in this parameter, the AC drive reports Err20.

Function Code	Parameter Name	Setting Range	Default
		0: No auto-tuning	
P1-37	Auto-tuning selection	1: Asynchronous motor static auto-tuning	2: Asynchronous motor complete auto-tuning 11: Synchronous motor with-load auto-tuning 12: Synchronous motor no-load auto-tuning

- 0: No auto-tuning

Auto-tuning is prohibited.

- 1: Asynchronous motor static auto-tuning

It is applicable to scenarios where complete auto-tuning cannot be performed because the asynchronous motor cannot be disconnected from the load.

Before performing static auto-tuning, properly set the motor type and motor nameplate parameters of P1-00 to P1-05 frst. The AC drive will obtain parameters of P1-06 to P108 by static auto-tuning.

Set this parameter to 1 , and press RUN. Then, the AC drive starts static auto-tuning.

- 2: Asynchronous motor complete auto-tuning

To perform this type of auto-tuning, ensure that the motor is disconnected from the load. During the process of complete auto-tuning, the AC drive performs static auto-tuning first and then accelerates to 80% of the rated motor frequency within the acceleration time set in P0-17. The AC drive keeps running for a certain period and then decelerates to stop within deceleration time set in P0-18.

Before performing complete auto-tuning, properly set the motor type, motor nameplate parameters of P1-00 to P1-05, "Encoder type" (P1-28) and "Encoder pulses per revolution" (P1-27) frst.

The AC drive will obtain motor parameters of F1-06 to F1-10, "A/B phase sequence of ABZ incremental encoder" (P1-30) and vector control current loop PI parameters of P2-

Set this parameter to 2 , and press run . Then, the AC drive starts complete autotuning.

- 11: Synchronous motor with-load auto-tuning

It is applicable to scenarios where the synchronous motor cannot be disconnected from the load. During with-load auto-tuning, the motor rotates at the speed of 10 PRM.

Before performing with-load auto-tuning, properly set the motor type and motor nameplate parameters of P1-00 to P1-05 frst.

By with-load auto-tuning, the AC drive obtains the initial position angle of the synchronous motor, which is a necessary prerequisite of the motor's normal running. Before the first use of the synchronous motor after installation, motor auto-tuning must be performed.

Set this parameter to 11, and press run . Then, the AC drive starts with-load auto-tuning.

- 12: Synchronous motor no-load auto-tuning

If the synchronous motor can be disconnected from the load, no-load auto-tuning is recommended, which will achieve better running performance compared with with-load auto-tuning.

During the process of no-load auto-tuning, the AC drive performs with-load auto-tuning first and then accelerates to 80% of the rated motor frequency within the acceleration time set in P0-17. The AC drive keeps running for a certain period and then decelerates to stop within the deceleration time set in P0-18.

Before performing no-load auto-tuning, properly set the motor type, motor nameplate parameters of P1-00 to P1-05, "Encoder type" (P1-28) and "Encoder pulses per revolution" (P1-27) and "Number of pole pairs of resolver" (P1-34) frst.

The AC drive will obtain motor parameters of F1-16 to F1-20, encoder related parameters of P1-30 to P1-33 and vector control current loop PI parameters of P2-13 to P2-16 by no-load auto-tuning.

Set this parameter to 12 , and press run . Then, the AC drive starts no-load auto-tuning.

Note

Motor auto-tuning can be performed only in operation panel mode.

Group P2: Vector Control Parameters

Group P2 is valid for vector control, and invalid for V/F control.

Function Code	Parameter Name	Setting Range	Default
P2-00	Speed loop proportional gain 1	$0-100$	30
P2-01	Speed loop integral time 1	$0.01-10.00 \mathrm{~s}$	0.50 s
P2-02	Switchover frequency 1	0.00 to P2-05	5.00 Hz
P2-03	Speed loop proportional gain 2	$0-100$	20

Function Code	Parameter Name	Setting Range	Default
P2-04	Speed loop integral time 2	$0.01-10.00 \mathrm{~s}$	1.00 s
P2-05	Switchover frequency 2	P2-02 to maximum output frequency	10.00 Hz

Speed loop PI parameters vary with running frequencies of the AC drive.

- If the running frequency is less than or equal to "Switchover frequency 1" (P2-02), the speed loop PI parameters are P2-00 and P2-01.
- If the running frequency is equal to or greater than "Switchover frequency 2" (P2-05), the speed loop PI parameters are P2-03 and P2-04.
- If the running frequency is between P2-02 and P2-05, the speed loop PI parameters are obtained from the linear switchover between the two groups of PI parameters, as shown in Figure 5-3.

Figure 5-3 Relationship between running frequencies and PI parameters

The speed dynamic response characteristics in vector control can be adjusted by setting the proportional gain and integral time of the speed regulator.
To achieve a faster system response, increase the proportional gain and reduce the integral time. Be aware that this may lead to system oscillation.

The recommended adjustment method is as follows:
If the factory setting cannot meet the requirements, make proper adjustment. Increase the proportional gain first to ensure that the system does not oscillate, and then reduce the integral time to ensure that the system has quick response and small overshoot.

Note

Improper PI parameter setting may cause too large speed overshoot, and overvoltage fault may even occur when the overshoot drops.

Function Code	Parameter Name	Setting Range	Default
P2-06	Vector control slip gain	$50 \%-200 \%$	100%

For SFVC, it is used to adjust speed stability accuracy of the motor. When the motor with load runs at a very low speed, increase the value of this parameter; when the motor with load runs at a very large speed, decrease the value of this parameter.

For CLVC, it is used to adjust the output current of the AC drive with same load.

Function Code	Parameter Name	Setting Range	Default
P2-07	Time constant of speed loop filter	$0.000-0.100 \mathrm{~s}$	0.000 s

In the vector control mode, the output of the speed loop regulator is torque current reference. This parameter is used to filter the torque references. It need not be adjusted generally and can be increased in the case of large speed fluctuation. In the case of motor oscillation, decrease the value of this parameter properly.

If the value of this parameter is small, the output torque of the AC drive may fluctuate greatly, but the response is quick.

Function Code	Parameter Name	Setting Range	Default
P2-08	Vector control over-excitation gain	$0-200$	64

During deceleration of the AC drive, over-excitation control can restrain rise of the bus voltage to avoid the overvoltage fault. The larger the over-excitation gain is, the better the restraining effect is.

Increase the over-excitation gain if the AC drive is liable to overvoltage error during deceleration. Too large over-excitation gain, however, may lead to an increase in output current. Therefore, set this parameter to a proper value in actual applications.

Set the over-excitation gain to 0 in applications of small inertia (the bus voltage will not rise during deceleration) or where there is a braking resistor.

Function Code	Parameter Name	Setting Range	Default
		0: P2-10 1: Al1	
P2-09	Torque upper limit source in speed control mode	2: Al2 3: Al3	0
		4: Pulse setting (DI5) 5: Communication setting	
P2-10	Digital setting of torque upper limit in speed control mode	$0.0 \%-200.0 \%$	150.0%

In the speed control mode, the maximum output torque of the AC drive is restricted by P209. If the torque upper limit is analog, pulse or communication setting, 100% of the setting corresponds to the value of P2-10, and 100\% of the value of P2-10 corresponds to the AC drive rated torque.

For details on the AI1, Al2 and Al3 setting, see the description of the AI curves in group P4.
For details on the pulse setting, see the description of P4-28 to P4-32.
When the AC drive is in communication with the master, if P2-09 is set to 5 "communication setting", P2-10 "Digital setting of torque upper limit in speed control mode" can be set via communication from the master.

In other conditions, the host computer writes data -100.00% to 100.00% by the communication address 0x1000, where 100.0\% corresponds to the value of P2-10. The communication protocol can be Modbus, CANopen, CANlink or PROFIBUS-DP.

Function Code	Parameter Name	Setting Range	Default
P2-13	Excitation adjustment proportional gain	$0-20000$	2000
P2-14	Excitation adjustment integral gain	$0-20000$	1300
P2-15	Torque adjustment proportional gain	$0-20000$	2000
P2-16	Torque adjustment integral gain	$0-20000$	1300

These are current loop PI parameters for vector control. These parameters are automatically obtained through "Asynchronous motor complete auto-tuning" or "Synchronous motor noload auto-tuning", and need not be modified

The dimension of the current loop integral regulator is integral gain rather than integral time.
Note that too large current loop PI gain may lead to oscillation of the entire control loop. Therefore, when current oscillation or torque fluctuation is great, manually decrease the proportional gain or integral gain here.

Function Code	Parameter Name	Setting Range	Default
P2-18	Field weakening mode of synchronous motor	0: No field weakening 1: Direct calculation 2: Automatic adjustment	1
P2-19	Field weakening depth of synchronous motor	$50 \%-500 \%$	100%
P2-20	Maximum field weakening current	$1 \%-300 \%$	50%
P2-21	Field weakening automatic adjustment gain	$10 \%-500 \%$	100%
P2-22	Field weakening integral multiple	$2-10$	2

These parameters are used to set field weakening control for the synchronous moto .
If P2-18 is set to 0 , feld weakening control on the synchronous motor is disabled. In this case, the maximum rotational speed is related to the AC drive bus voltage. If the motor's maximum rotational speed cannot meet the requirements, enable the field weakening function to increase the speed.

UNIQUE-G1100 provides two field weakening modes: direct calculation and automatic adjustment.

- In direct calculation mode, directly calculate the demagnetized current and manually adjust the demagnetized current by means of P2-19. The smaller the demagnetized current is, the smaller the total output current is. However, the desired field weakening effect may not be achieved.
- In automatic adjustment mode, the best demagnetized current is selected automatically. This may influence the system dynamic performance or cause instabilit .

The adjustment speed of the field weakening current can be changed by modifying the values of P2-21 and P2-22. A very quick adjustment may cause instability. Therefore, generally do not modify them manually.

Group P3: V/F Control Parameters

Group P3 is valid only for V/F control.
The V/F control mode is applicable to low load applications (fan or pump) or applications where one AC drive operates multiple motors or there is a large difference between the AC drive power and the motor power.

Function Code	Parameter Name	Setting Range	Default
P3-00	V/F curve setting	0: Linear V/F 1: Multi-point V/F 2: Square V/F 3: 1.2-power V/F 4: 1.4-power V/F 6: 1.6-power V/F 8: 1.8-power V/F 9: Reserved 10: V/F complete separation 11: V/F half separation	0

- 0: Linear V/F

It is applicable to common constant torque load.

- 1: Multi-point V/F

It is applicable to special load such as dehydrator and centrifuge. Any such V/F curve can be obtained by setting parameters of P3-03 to P3-08.

- 2: Square V/F

It is applicable to centrifugal loads such as fan and pump.

- 3 to 8: V/F curve between linear V/F and square V/F
- 10: V/F complete separation

In this mode, the output frequency and output voltage of the AC drive are independent. The output frequency is determined by the frequency source, and the output voltage is determined by "Voltage source for V/F separation" (P3-13).

It is applicable to induction heating, inverse power supply and torque motor control.

- 11: V/F half separation

In this mode, V and F are proportional and the proportional relationship can be set in P3-13. The relationship between V and F are also related to the rated motor voltage and rated motor frequency in Group P1.

Assume that the voltage source input is X (0 to 100\%), the relationship between V and F is:

V/F $=2 \times \mathrm{X} \times$ (Rated motor voltage)/(Rated motor frequency)

Function Code	Parameter Name	Setting Range	Default
P3-01	Torque boost	$0.0 \%-30 \%$	Model dependent
P3-02	Cut-off frequency of torque boost	0.00 Hz to maximum output frequency	50.00 Hz

To compensate the low frequency torque characteristics of V/F control, you can boost the output voltage of the AC drive at low frequency by modifying P3-01.

If the torque boost is set to too large, the motor may overheat, and the AC drive may suffer overcurrent.

If the load is large and the motor startup torque is insuffcient, increase the value of P3-01. If the load is small, decrease the value of P3-01. If it is set to 0.0 , the $A C$ drive performs automatic torque boost. In this case, the AC drive automatically calculates the torque boost value based on motor parameters including the stator resistance.

P3-02 specifies the frequency under which torque boost is valid. Torque boost becomes invalid when this frequency is exceeded, as shown in the following figure

Figure 5-4 Manual torque boost

f1: Cutoff frequency of manual torque boost
fb: Rated running frequency

Function Code	Parameter Name	Setting Range	Default
P3-03	Multi-point V/F frequency 1 (F1)	0.00 Hz to P3-05	0.00 Hz
P3-04	Multi-point V/F voltage 1 (V1)	$0.0 \%-100.0 \%$	0.0%
P3-05	Multi-point V/F frequency 2 (F2)	P3-03 to P3-07	0.00 Hz
P3-06	Multi-point V/F voltage 2 (V2)	$0.0 \%-100.0 \%$	0.0%
P3-07	Multi-point V/F frequency 3 (F3)	P3-05 to rated motor frequency (P1-04) Note: The rated frequencies of motors 2, 3, and 4 are respectively set in A2-04, A3- 04, and A4-04.	0.00 Hz
P3-08	Multi-point V/F voltage 3 (V3)	$0.0 \%-100.0 \%$	0.0%

These six parameters are used to define the multi-point V/F curve
The multi-point V/F curve is set based on the motor's load characteristic. The relationship between voltages and frequencies is:
$\mathrm{V} 1<\mathrm{V} 2<\mathrm{V} 3, \mathrm{~F} 1<\mathrm{F} 2<\mathrm{F} 3$
At low frequency, higher voltage may cause overheat or even burnt out of the motor and overcurrent stall or overcurrent protection of the AC drive.

Figure 5-5 Setting of multi-point V/F curve

V1-V3: 1st, 2nd and 3rd voltage percentages of multi-point V/F

Vb : Rated motor voltage

P1-P3: 1st, 2nd and 3rd frequency percentages of multi-point V/F

Pb : Rated motor running frequency

Function Code	Parameter Name	Setting Range	Default
P3-09	V/F slip compensation gain	$0 \%-200.0 \%$	0.0%

This parameter is valid only for the asynchronous motor.
It can compensate the rotational speed slip of the asynchronous motor when the load of the motor increases, stabilizing the motor speed in case of load change. If this parameter is set to 100%, it indicates that the compensation when the motor bears rated load is the rated motor slip. The rated motor slip is automatically obtained by the AC drive through calculation based on the rated motor frequency and rated motor rotational speed in group P1.

Generally, if the motor rotational speed is different from the target speed, slightly adjust this parameter.

Function Code	Parameter Name	Setting Range	Default
P3-10	V/F over-excitation gain	$0-200$	64

During deceleration of the AC drive, over-excitation can restrain rise of the bus voltage, preventing the overvoltage fault. The larger the over-excitation is, the better the restraining result is.

Increase the over-excitation gain if the AC drive is liable to overvoltage error during deceleration. However, too large over-excitation gain may lead to an increase in the output current. Set P3-09 to a proper value in actual applications.

Set the over-excitation gain to 0 in the applications where the inertia is small and the bus voltage will not rise during motor deceleration or where there is a braking resistor.

Function Code	Parameter Name	Setting Range	Default
P3-11	V/F oscillation suppression gain	$0-100$	Model dependent

Set this parameter to a value as small as possible in the prerequisite of efficient oscillation suppression to avoid influence on V/F control

Set this parameter to 0 if the motor has no oscillation. Increase the value properly only when the motor has obvious oscillation. The larger the value is, the better the oscillation suppression result will be.

When the oscillation suppression function is enabled, the rated motor current and noload current must be correct. Otherwise, the V/F oscillation suppression effect will not be satisfactory.

Function Code	Parameter Name	Setting Range	Default
P3-13	Voltage source for V/F separation	0: Digital setting (P3-14) 1: Al1 2: AI2 3: AI3 4: Pulse setting (DI5) 5: Multi-reference 6: Simple PLC 7: PID 8: Communication setting 100.0% corresponds to the rated motor voltage (P1-02, A4-02, A502, A6-02).	0
P3-14	Voltage digital setting for V/F separation	0 V to rated motor voltage	0 V

V/F separation is generally applicable to scenarios such as induction heating, inverse power supply and motor torque control.

If V/F separated control is enabled, the output voltage can be set in P3-14 or by means of analog, multi-reference, simple PLC, PID or communication. If you set the output voltage by means of non-digital setting, 100% of the setting corresponds to the rated motor voltage. If a negative percentage is set, its absolute value is used as the effective value.

- 0: Digital setting (P3-14)

The output voltage is set directly in P3-14.

- 1: AI1; 2: AI2; 3: AI3

The output voltage is set by Al terminals.

- 4: Pulse setting (DI5)

The output voltage is set by pulses of the terminal DI5.

Pulse setting specification: voltage range 9-30 , frequency range $0-100 \mathrm{kHz}$

- 5: Multi-reference

If the voltage source is multi-reference, parameters in group P4 and PC must be set to determine the corresponding relationship between setting signal and setting voltage. 100.0% of the multi-reference setting in group PC corresponds to the rated motor voltage.

- 6: Simple PLC

If the voltage source is simple PLC mode, parameters in group PC must be set to determine the setting output voltage.

- 7: PID

The output voltage is generated based on PID closed loop. For details, see the description of PID in group PA.

- 8: Communication setting

The output voltage is set by the host computer by means of communication.
The voltage source for V/F separation is set in the same way as the frequency source. For details, see P0-03. 100.0\% of the setting in each mode corresponds to the rated motor voltage. If the corresponding value is negative, its absolute value is used.

Function Code	Parameter Name	Setting Range	Default
P3-15	Voltage rise time of V/F separation	$0.0-1000.0 \mathrm{~s}$	0.0 s
P3-16	Voltage decline time of V/F separation	$0.0-1000.0 \mathrm{~s}$	0.0 s

P3-15 indicates the time required for the output voltage to rise from 0 V to the rated motor voltage shown as t 1 in the following figure

P3-16 indicates the time required for the output voltage to decline from the rated motor voltage to 0 V , shown as t 2 in the following figure

Figure 5-6 Voltage of V/F separation

Group P4: Input Terminals

The G1100 provides fve DI terminals (DI5 can be used for high-speed pulse input) and two analog input (AI) terminals. The optional extension card provides another five DI terminals (DI6 to DI10) and an AI terminal (AI3).

Function Code	Parameter Name	Default	Remark
P4-00	DI1 function selection	1: Forward RUN (FWD)	Standard
P4-01	DI2 function selection	4: Forward JOG (FJOG)	Standard
P4-02	DI3 function selection	9: Fault reset (RESET)	Standard
P4-03	DI4 function selection	12: Multi-reference terminal 1	Standard
P4-04	DI5 function selection	13: Multi-reference terminal 2	Standard
P4-05	DI6 function selection	0	Extended
P4-06	DI7 function selection	0	Extended
P4-07	DI8 function selection	0	Extended
P4-08	DI9 function selection	0	Extended
P4-09	DI10 function selection	0	Extended

The following table lists the functions available for the DI terminals.
Table 5-1 Functions of DI terminals

Value	Function	Description
0	No function	Set 0 for reserved terminals to avoid malfunction.
1	Forward RUN (FWD)	The terminal is used to control forward or reverse RUN of the AC drive.
2	Reverse RUN (REV)	The terminal determines three-line control of the AC drive. For details, see the description of P4-11.
3	Three-line control	FJOG indicates forward JOG running, while RJOG indicates reverse JOG running. The JOG frequency, acceleration time and deceleration time are described respectively in P8-00, P8-01 and P8-02.
4	Forward JOG (FJOG)	If the frequency is determined by external terminals, the terminals with the two functions are used as increment and decrement commands for frequency modification. When the frequency source is digital setting, they are used to adjust the frequency.
5	Reverse JOG (RJOG)	Terminal UP
6	Terminal DOWN	The AC drive blocks its output, the motor coasts to rest and is not controlled by the AC drive. It is the same as coast to stop described in P6-10.
9	Fault reset (RESET)	The terminal is used for fault reset function, the same as the function of RESET key on the operation panel. Remote fault reset is implemented by this function.

Value	Function	Description
10	RUN pause	The AC drive decelerates to stop, but the running parameters are all memorized, such as PLC, swing frequency and PID parameters. After this function is disabled, the AC drive resumes its status before stop.
11	Normally open (NO) input of external fault	If this terminal becomes ON, the AC drive reports Err15 and performs the fault protection action. For more details, see the description of P9-47.
12	Multi-reference terminal 1	The setting of 16 speeds or 16 other references can be implemented through combinations of 16 states of these four terminals.
13	Multi-reference terminal 2	
14	Multi-reference terminal 3	
15	Multi-reference terminal 4	
16	Terminal 1 for acceleration/ deceleration time selection	Totally four groups of acceleration/deceleration time can be selected through combinations of two states of these two terminals.
17	Terminal 2 for acceleration/ deceleration time selection	
18	Frequency source switchover	The terminal is used to perform switchover between two frequency sources according to the setting in P0-07.
19	UP and DOWN setting clear (terminal, operation panel)	If the frequency source is digital setting, the terminal is used to clear the modification by using the UP/ DOWN function or the increment/decrement key on the operation panel, returning the set frequency to the value of $\mathrm{P} 0-08$.
20	Command source switchover terminal	If the command source is set to terminal control (P0-02 $=1$), this terminal is used to perform switchover between terminal control and operation panel control. If the command source is set to communication control ($\mathrm{P} 0-02=2$), this terminal is used to perform switchover between communication control and operation panel control.
21	Acceleration/Deceleration prohibited	It enables the AC drive to maintain the current frequency output without being affected by external signals (except the STOP command).
22	PID pause	PID is invalid temporarily. The AC drive maintains the current frequency output without supporting PID adjustment of frequency source.
23	PLC status reset	The terminal is used to restore the original status of PLC control for the AC drive when PLC control is started again after a pause.
24	Swing pause	The AC drive outputs the central frequency, and the swing frequency function pauses.
25	Counter input	This terminal is used to count pulses.
26	Counter reset	This terminal is used to clear the counter status.
27	Length count input	This terminal is used to count the length.
28	Length reset	This terminal is used to clear the length.

Value	Function	Description
29	Torque control prohibited	The AC drive is prohibited from torque control and enters the speed control mode.
30	Pulse input (enabled only for DI5)	D15 is used for pulse input.
31	Reserved	Reserved.
32	Immediate DC braking	After this terminal becomes ON, the AC drive directly switches over to the DC braking state.
33	Normally closed (NC) input of external fault	After this terminal becomes ON, the AC drive reports Err15 and stops.
34	Frequency modification forbidden	After this terminal becomes ON, the AC drive does not respond to any frequency modification.
35	Reverse PID action direction	After this terminal becomes ON, the PID action direction is reversed to the direction set in FA-03.
36	External STOP terminal 1	In operation panel mode, this terminal can be used to stop the AC drive, equivalent to the function of the STOP key on the operation panel.
37	Command source switchover terminal 2	It is used to perform switchover between terminal control and communication control. If the command source is terminal control, the system will switch over to communication control after this terminal becomes ON.
38	PID integral pause	After this terminal becomes ON, the integral adjustment function pauses. However, the proportional and differentiation adjustment functions are still valid.
39	Switchover between main frequency source X and preset frequency	After this terminal becomes ON, the frequency source X is replaced by the preset frequency set in $\mathrm{P} 0-08$.
40	Switchover between auxiliary frequency source Y and preset frequency	After this terminal is enabled, the frequency source Y is replaced by the preset frequency set in P0-08.
41	Motor selection terminal 1	Switchover among the four groups of motor parameters can be implemented through the four state combinations
42	Motor selection terminal 2	of these two terminals.
43	PID parameter switchover	If the PID parameters switchover performed by means of DI terminal (PA-18 = 1), the PID parameters are PA05 to PA-07 when the terminal becomes OFF; the PID parameters are PA-15 to PA-17 when this terminal becomes ON.
44	User-defined fault 1	If these two terminals become ON , the AC drive reports Err27 and Err28 respectively, and performs fault protection actions based on the setting in P9-49.
45	User-defined fault 2	
46	Speed control/Torque control switchover	This terminal enables the AC drive to switch over between speed control and torque control. When this terminal becomes OFF, the AC drive runs in the mode set in A0-00. When this terminal becomes ON, the AC drive switches over to the other control mode.

Value	Function	Description
47	Emergency stop	When this terminal becomes ON, the AC drive stops within the shortest time. During the stop process, the current remains at the set current upper limit. This function is used to satisfy the requirement of stopping the AC drive in emergency state.
48	External STOP terminal 2	In any control mode (operation panel, terminal or communication), it can be used to make the AC drive decelerate to stop. In this case, the deceleration time is deceleration time 4.
49	Deceleration DC braking	When this terminal becomes ON, the AC drive decelerates to the initial frequency of stop DC braking and then switches over to DC braking state.
50	Clear the current running time	When this terminal becomes ON, the AC drive's current running time is cleared. This function must be supported by P8-42 and P8-53.
51	Switchover between two- line mode and three-line mode	It is used to perform switchover between two-line control and three-line control. If P4 -11 is set to Two-line mode 1, the system switches over to three-line mode 1 when the DI allocated with this function becomes ON

The four multi-reference terminals have 16 state combinations, corresponding to 16 reference values, as listed in the following table.

Table 5-2 State combinations of the four multi-reference terminals

K4	K3	K2	K1	Reference Setting	Corresponding Parameter
OFF	OFF	OFF	OFF	Reference 0	PC-00
OFF	OFF	OFF	ON	Reference 1	PC-01
OFF	OFF	ON	OFF	Reference 2	PC-02
OFF	OFF	ON	ON	Reference 3	PC-03
OFF	ON	OFF	OFF	Reference 4	PC-04
OFF	ON	OFF	ON	Reference 5	PC-05
OFF	ON	ON	OFF	Reference 6	PC-06
OFF	ON	ON	ON	Reference 7	PC-07
ON	OFF	OFF	OFF	Reference 8	PC-08
ON	OFF	OFF	ON	Reference 9	PC-09
ON	OFF	ON	OFF	Reference 10	PC-10
ON	OFF	ON	ON	Reference 11	PC-11
ON	ON	OFF	OFF	Reference 12	PC-12
ON	ON	OFF	ON	Reference 13	PC-13
ON	ON	ON	OFF	Reference 14	PC-14
ON	ON	ON	ON	Reference 15	PC-15

If the frequency source is multi-reference, the value 100% of PC-00 to PC-15 corresponds to the value of P0-10 (Maximum frequency).

Besides the multi-speed function, the multi-reference can be also used as the PID setting source or the voltage source for V/F separation, satisfying the requirement on switchover of different setting values.

Two terminals for acceleration/deceleration time selection have four state combinations, as listed in the following table.

Table 5-3 State combinations of two terminals for acceleration/deceleration time selection

Terminal 2	Terminal 1	Acceleration/Deceleration Time Selection	Corresponding Parameters
OFF	OFF	Acceleration/Deceleration time 1	P0-17, P0-18
OFF	ON	Acceleration/Deceleration time 2	P8-03, P8-04
ON	OFF	Acceleration/Deceleration time 3	P8-05, P8-06
ON	ON	Acceleration/Deceleration time 4	P8-07, P8-08

Two motor selection terminals have four state combinations, corresponding to four motors, as listed in the following table.

Table 5-4 State combinations of two motor selection terminals

Terminal 2	Terminal 1	Selected Motor	Corresponding Parameters
OFF	OFF	Motor 1	Group P1, Group P2
OFF	ON	Motor 2	Group A2
ON	OFF	Motor 3	Group A3
ON	ON	Motor 4	Group A4

Function Code	Parameter Name	Setting Range	Default
P4-10	DI filter time	$0.000-1.000 \mathrm{~s}$	0.010 s

It is used to set the software filter time of DI terminal status. If DI terminals are liable to interference and may cause malfunction, increase the value of this parameter to enhance the anti-interference capability. However, increase of DI filter time will reduce the response of DI terminals.

Function Code	Parameter Name	Setting Range	Default
		0: Two-line mode 1	
P4-11	Terminal command mode	1: Two-line mode 2	2: Three-line mode 1
		3: Three-line mode 2	

This parameter is used to set the mode in which the AC drive is controlled by external terminals. The following uses DI1, DI2 and DI3 among DI1 to DI10 as an example, with allocating functions of DI1, DI2 and DI3 by setting P4-00 to P4-02.

- 0: Two-line mode 1

It is the most commonly used two-line mode, in which the forward/reverse rotation of the motor is decided by DI1 and DI2. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	0	Two-line 1
P4-00	DI1 function selection	1	Forward RUN (FWD)
P4-01	DI2 function selection	2	Reverse RUN (REV)

Figure 5-7 Setting of two-line mode 1

K1	K2	RUN command
1	0	Forward RUN
0	1	Reverse RUN
1	1	Stop
0	0	Stop

As shown in the preceding figure, when only K 1 is ON, the AC drive instructs forward rotation. When only K2 is ON, the AC drive instructs reverse rotation. When K1 and K2 are ON or OFF simultaneously, the AC drive stops.

- 1: Two-line mode 2

In this mode, DI1 is RUN enabled terminal, and DI2 determines the running direction. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	1	Two-line 2
P4-00	DI1 function selection	1	RUN enabled
P4-01	DI2 function selection	2	Forward or reverse direction

Figure 5-8 Setting of two-line mode 2

K1	K2	RUN command
1	0	Forward RUN
1	1	Reverse RUN
0	0	Stop
0	1	Stop

As shown in the preceding figure, if K 1 is ON , the AC drive instructs forward rotation when K2 is OFF, and instructs reverse rotation when K2 is ON. If K1 is OFF, the AC drive stops.

- 2: Three-line mode 1

In this mode, DI3 is RUN enabled terminal, and the direction is decided by DI1 and DI2. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	2	Three-line 1
P4-00	DI1 function selection	1	Forward RUN (FWD)
P4-01	DI2 function selection	2	Reverse RUN (REV)
P4-02	DI3 function selection	3	Three-line control

Figure 5-9 Setting of three-line mode 1

As shown in the preceding figure, if SB1 is ON, the AC drive instructs forward rotation when SB2 is pressed to be ON and instructs reverse rotation when SB3 is pressed to be ON. The AC drive stops immediately after SB1 becomes OFF. During normal startup and running, SB1 must remain ON. The AC drive's running state is determined by the final actions on SB1, SB2 and SB3

- 3: Three-line mode 2

In this mode, DI3 is RUN enabled terminal. The RUN command is given by DI1 and the direction is decided by DI2. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	3	Three-line 2
P4-00	DI1 function selection	1	RUN enabled
P4-01	DI2 function selection	2	Forward or reverse direction
P4-02	DI3 function selection	3	Three-line control

Figure 5-10 Setting of three-line mode 2

K	Running direction
0	Forward
1	Reverse

As shown in the preceding figure, if SB1 is ON, the AC drive starts running when SB2 is pressed to be ON; the AC drive instructs forward rotation when K is OFF and instructs reverse rotation when K is ON. The AC drive stops immediately after SB1 becomes OFF. During normal startup and running, SB1 must remain ON. The AC drive's running state is determined by the final actions of SB1, SB2 and K

Function Code	Parameter Name	Setting Range	Default
P4-12	Terminal UP/DOWN rate	$0.01-65.535 \mathrm{~Hz} / \mathrm{s}$	$1.00 \mathrm{~Hz} / \mathrm{s}$

It is used to adjust the rate of change of frequency when the frequency is adjusted by means of terminal UP/DOWN.

- If P0-22 (Frequency reference resolution) is 2, the setting range is $0.001-65.535 \mathrm{~Hz} / \mathrm{s}$.
- If P0-22 (Frequency reference resolution) is 1 , the setting range is $0.01-655.35 \mathrm{~Hz} / \mathrm{s}$.

Function Code	Parameter Name	Setting Range	Default
P4-13	Al curve 1 minimum input	0.00 V to P4-15	0.00 V
P4-14	Corresponding setting of AI curve 1 minimum input	$-100.00 \%-100.0 \%$	0.0%
P4-15	Al curve 1 maximum input	P4-13 to 10.00 V	10.00 V
P4-16	Corresponding setting of AI curve 1 maximum input	$-100.00 \%-100.0 \%$	100.0%
P4-17	Al1 filter time	$0.00-10.00 \mathrm{~s}$	0.10 s

These parameters are used to define the relationship between the analog input voltage and the corresponding setting. When the analog input voltage exceeds the maximum value (P4$15)$, the maximum value is used. When the analog input voltage is less than the minimum value ($\mathrm{P} 4-13$), the value set in P4-34 (Setting for Al less than minimum input) is used.

When the analog input is current input, 1 mA current corresponds to 0.5 V voltage.
P4-17 (Al1 flter time) is used to set the software flter time of Al1. If the analog input is liable to interference, increase the value of this parameter to stabilize the detected analog input. However, increase of the Al filter time will slow the response of analog detection. Set this parameter properly based on actual conditions.

In different applications, 100\% of analog input corresponds to different nominal values. For details, refer to the description of different applications.

Two typical setting examples are shown in the following figure
Figure 5-11 Corresponding relationship between analog input and set values

Function Code	Parameter Name	Setting Range	Default
P4-18	Al curve 2 minimum input	0.00 V to P4-20	0.00 V
P4-19	Corresponding setting of AI curve 2 minimum input	$-100.00 \%-100.0 \%$	0.0%
P4-20	Al curve 2 maximum input	P4-18 to 10.00 V	10.00 V
P4-21	Corresponding setting of AI curve 2 maximum input	$-100.00 \%-100.0 \%$	100.0%
P4-22	Al2 filter time	$0.00-10.00 \mathrm{~s}$	0.10 s

Function Code	Parameter Name	Setting Range	Default
P4-23	Al curve 3 minimum input	0.00 V to P4-25	0.00 V
P4-24	Corresponding setting of AI curve 3 minimum input	$-100.00 \%-100.0 \%$	0.0%
P4-25	Al curve 3 maximum input	P4-23 to 10.00 V	10.00 V
P4-26	Corresponding setting of AI curve 3 maximum input	$-100.00 \%-100.0 \%$	100.0%
P4-27	Al3 filter time	$0.00-10.00 \mathrm{~s}$	0.10 s

The method of setting AI2 and AI3 functions is similar to that of setting AI1 function.

Function Code	Parameter Name	Setting Range	Default
P4-28	Pulse minimum input	0.00 kHz to P4-30	0.00 kHz
P4-29	Corresponding setting of pulse minimum input	$-100.00 \%-100.0 \%$	0.0%
P4-30	Pulse maximum input	$\mathrm{P} 4-28 \mathrm{to} 50.00 \mathrm{kHz}$	50.00 kHz
P4-31	Corresponding setting of pulse maximum input	$-100.00 \%-100.0 \%$	100.0%
P4-32	Pulse filter time	$0.00-10.00 \mathrm{~s}$	0.10 s

These parameters are used to set the relationship between DI5 pulse input and corresponding settings. The pulses can only be input by DI5. The method of setting this function is similar to that of setting AI1 function.

Function Code	Parameter Name	Setting Range	Default
P4-33	Al curve selection	Unit's digit (Al1 curve selection)	321
		Curve 1 (2 points, see P4-13 to P4-16)	
		Curve 2 (2 points, see P4-18 to P4-21)	
		Curve 3 (2 points, see P4-23 to P4-26)	
		Curve 4 (4 points, see A6-00 to A6-07)	
		Curve 5 (4 points, see A6-08 to A6-15)	
		Ten's digit (Al2 curve selection)	
		Curve 1 to curve 5 (same as Al1)	
		Hundred's digit (Al3 curve selection)	
		Curve 1 to curve 5 (same as AI1)	

The unit's digit, ten's digit and hundred's digit of this parameter are respectively used to select the corresponding curve of $\mathrm{AI} 1, \mathrm{AI} 2$ and Al 3 . Any of the five curves can be selected for AI1, AI2 and AI3.

Curve 1, curve 2 and curve 3 are all 2-point curves, set in group P4. Curve 4 and curve 5 are both 4-point curves, set in group A6.

The G1100 provides two Al terminals as standard. Al3 is provided by an optional extension card.

Function Code	Parameter Name	Setting Range	Default
P4-34	Setting for Al less than minimum input	Unit's digit (Setting for Al1 less than minimum input)	000
		0 : Minimum value 1: 0.0\%	
		Ten's digit (Setting for Al2 less than minimum input)	
		0,1 (same as Al1)	
		Hundred's digit (Setting for Al3 less than minimum input)	
		0,1 (same as Al1)	

This parameter is used to determine the corresponding setting when the analog input voltage is less than the minimum value. The unit's digit, ten's digit and hundred's digit of this parameter respectively correspond to the setting for $\mathrm{Al} 2, \mathrm{Al} 2$ and Al 3 .

If the value of a certain digit is 0 , when analog input voltage is less than the minimum input, the corresponding setting of the minimum input (P4-14, P4-19, P4-24) is used.

If the value of a certain digit is 1 , when analog input voltage is less than the minimum input, the corresponding value of this analog input is 0.0%.

Function Code	Parameter Name	Setting Range	Default
P4-35	DI1 delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s
P4-36	DI2 delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s
P4-37	DI3 delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s

These parameters are used to set the delay time of the AC drive when the status of DI terminals changes.

Currently, only DI1, DI2 and DI3 support the delay time function.

Function Code	Parameter Name	Setting Range	Default
P4-38	DI valid mode selection 1	Unit's digit (DI1 valid mode)	00000
		0 : High level valid 1: Low level valid	
		Ten's digit (DI2 valid mode)	
		0, 1 (same as DI1)	
		Hundred's digit (DI3 valid mode)	
		0, 1 (same as DI1)	
		Thousand's digit (DI4 valid mode)	
		0, 1 (same as DI1)	
		Ten thousand's digit (DI5 valid mode)	
		0,1 (same as DI1)	
P4-39	DI valid mode selection 2	Unit's digit (DI6 valid mode)	00000
		0, 1 (same as DI1)	
		Ten's digit (DI7 valid mode)	
		0, 1 (same as DI1)	
		Hundred's digit (D18 state)	
		0, 1 (same as DI1)	
		Thousand's digit (D19 valid mode)	
		0,1 (same as DI1)	
		Ten thousand's digit (DI10 valid mode)	
		0,1 (same as DI1)	

These parameters are used to set the valid mode of DI terminals.

- 0: High level valid

The DI terminal is valid when being connected with COM, and invalid when being disconnected from COM.

- 1: Low level valid

The DI terminal is invalid when being connected with COM, and invalid when being disconnected from COM.

Function Code	Parameter Name	Setting Range	Default
P4-40	Al2 input signal selection	0: Voltage signal $1:$ Current signal	0

Al2 supports voltage/current output, which is determined by jumper. After setting the jumper, perform corresponding setting in P4-40.

Group P5: Output Terminals

The G1100 provides an analog output (AO) terminal, a digital output (DO) terminal, a relay terminal and a FM terminal (used for high-speed pulse output or open-collector switch signal output) as standard. If these output terminals cannot satisfy requirements, use an optional I/ O extension card that provides an AO terminal (AO2), a relay terminal (relay 2) and a DO terminal (DO2). AUTOMATION

Function Code	Parameter Name	Setting Range	Default
P5-00	FM terminal output mode	0: Pulse output (FMP) 1: Switch signal output (FMR)	0

The FM terminal is programmable multiplexing terminal. It can be used for high-speed pulse output (FMP), with maximum frequency of 50 kHz . Refer to P5-06 for relevant functions of FMP. It can also be used as open collector switch signal output (FMR).

Function Code	Parameter Name	Default
P5-01	FMR function (open-collector output terminal)	0
P5-02	Relay function (T/A-T/B-T/C)	2
P5-03	Extension card relay function (P/A-P/B-P/C)	0
P5-04	DO1 function selection (open-collector output terminal)	1
P5-05	Extension card DO2 function	4

These five parameters are used to select the functions of the five digital output terminals. T/A-T/B-T/C and P/A-P/B-P/C are respectively the relays on the control board and the extension card.

The functions of the output terminals are described in the following table.

Table 5-5 Functions of output terminals

Value	Function	Description
0	No output	The terminal has no function.
1	AC drive running	When the AC drive is running and has output frequency (can be zero), the terminal becomes ON.
2	Fault output (stop)	When the AC drive stops due to a fault, the terminal becomes ON.
3	Frequency-level detection FDT1 output	Refer to the descriptions of P8-19 and P8-20.
4	Frequency reached	Refer to the descriptions of P8-21.
5	Zero-speed running (no output at stop)	If the AC drive runs with the output frequency of 0 , the terminal becomes ON. If the AC drive is in the stop state, the terminal becomes OFF.
6	Motor overload pre-warning	The AC drive judges whether the motor load exceeds the overload pre-warning threshold before performing the protection action. If the pre-warning threshold is exceeded, the terminal becomes ON. For motor overload parameters, see the descriptions of P9-00 to P9-02.
7	AC drive overload prewarning	The terminal becomes ON 10s before the AC drive overload protection action is performed.
8	Set count value reached	The terminal becomes ON when the count value reaches the value set in PB-08.
9	Designated count value reached	The terminal becomes ON when the count value reaches the value set in PB-09.
10	Length reached	The terminal becomes ON when the detected actual length exceeds the value set in PB-05.
11	PLC cycle complete	When simple PLC completes one cycle, the terminal outputs a pulse signal with width of 250 ms .
12	Accumulative running time reached	If the accumulative running time of the AC drive exceeds the time set in P8-17, the terminal becomes ON.
13	Frequency limited	If the set frequency exceeds the frequency upper limit or lower limit and the output frequency of the AC drive reaches the upper limit or lower limit, the terminal becomes ON.
14	Torque limited	In speed control mode, if the output torque reaches the torque limit, the AC drive enters the stall protection state and meanwhile the terminal becomes ON.
15	Ready for RUN	If the AC drive main circuit and control circuit become stable, and the AC drive detects no fault and is ready for RUN, the terminal becomes ON.
16	Al1 larger than AI2	When the input of AI1 is larger than the input of AI2, the terminal becomes ON.
17	Frequency upper limit reached	If the running frequency reaches the upper limit, the terminal becomes ON.
18	Frequency lower limit reached (no output at stop)	If the running frequency reaches the lower limit, the terminal becomes ON. In the stop state, the terminal becomes OFF.

Value	Function	Description			
19	Undervoltage state output	If the AC drive is in undervoltage state, the terminal becomes ON.			
20	Communication setting	Refer to the communication protocol.			
21	Reserved	Reserved.			
22	Reserved	Reserved.			
23	Zero-speed running 2 (having output at stop)	If the output frequency of the AC drive is 0, the terminal becomes ON. In the state of stop, the signal is still ON.			
24	Accumulative power- on time reached	If the AC drive accumulative power-on time (P7-13) exceeds the value set in P8-16, the terminal becomes ON.			
25	Frequency level detection FDT2 output	Refer to the descriptions of P8-28 and P8-29.			
26	Frequency 1 reached	Refer to the descriptions of P8-30 and P8-31.			
27	Frequency 2 reached	Refer to the descriptions of P8-32 and P8-33.			
28	Current 1 reached	Refer to the descriptions of P8-38 and P8-39.			
29	Current 2 reached	Refer to the descriptions of P8-40 and P8-41.			
30	Timing reached	If the timing function (P8-42) is valid, the terminal becomes ON after the current running time of the AC drive reaches the set time.			
31	Al1 input limit exceeded	If Al1 input is larger than the value of P8-46 (Al1 input voltage upper limit) or lower than the value of P8-45 (AI1 input voltage lower limit), the terminal becomes ON.			
32	Load becoming 0	If the load becomes 0, the terminal becomes ON.			
33	Reverse running	If the AC drive is in the reverse running state, the terminal becomes ON. reached			
34	Zero current state	Refer to the descriptions of P8-28 and P8-29. 35 36 Module temperature reachedIf the heatsink temperature of the inverter module (P7-07) reaches the set module temperature threshold (P8-47), the terminal becomes ON. Software current limit exceeded			
Frequency lower limit reached (having output at stop)	If the running frequency reaches the lower limit, the terminal becomes ON. In the stop state, the signal is still ON.				
38	Alarm output	If a fault occurs on the AC drive and the AC drive continues to run, the terminal outputs the alarm signal.			
P8-53, the terminal becomes ON.			$	$	If the exceeds the value of
:---					
P9-58 (Motor overheat warning threshold), the terminal					
becomes ON. You can view the motor temperature by using					
U0-34.					

Function Code	Parameter Name	Default
P5-06	FMP function selection	0
P5-07	AO1 function selection	0
P5-08	AO2 function selection	1

The output pulse frequency of the FMP terminal ranges from 0.01 kHz to "Maximum FMP output frequency" (P5-09). The value of P5-09 is between 0.01 kHz and 100.00 kHz .

The output range of AO 1 and AO 2 is $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$. The relationship between pulse and analog output ranges and corresponding functions is listed in the following table.

Table 5-6 Relationship between pulse and analog output ranges and corresponding functions

Value	Function	Range (Corresponding to Pulse or Analog Output Range $0.0 \%-100.0 \%$)
0	Running frequency	0 to maximum output frequency
1	Set frequency	0 to maximum output frequency
2	Output current	0 to 2 times of rated motor current
3	Output torque (absolute value)	0 to 2 times of rated motor torque
4	Output power	0 to 2 times of rated power
5	Output voltage	0 to 1.2 times of rated AC drive voltage
6	Pulse input	$0.01-100.00 \mathrm{kHz}$
7	Al1	$0-10 \mathrm{~V}$
8	Al2	$0-10 \mathrm{~V}$ (or 0-20 mA)
9	Al3	$0-0 \mathrm{~V}$
10	Length	0 to maximum set length
11	Count value	0 to maximum count value
12	Communication setting	$0.0 \%-100.0 \%$
13	Motor rotational speed	0 to rotational speed corresponding to maximum output frequency
14	Output current	$0.0-1000.0 \mathrm{~A}$
15	Output voltage	$0.0-000.0 \mathrm{~V}$
16	Output torque (actual value)	-2 times of rated motor torque to 2 times of rated motor torque

Function Code	Parameter Name	Setting Range	Default
P5-09	Maximum FMP output frequency	$0.01-100.00 \mathrm{kHz}$	50.00 kHz

If the FM terminal is used for pulse output, this parameter is used to set the maximum frequency of pulse output.

Function Code	Parameter Name	Setting Range	Default
P5-10	AO1 offset coefficient	$-100.0 \%-100.0 \%$	0.0%
P5-11	AO1 gain	$-10.00-10.00$	1.00
P5-12	AO2 offset coefficient	$-100.0 \%-100.0 \%$	0.00%
P5-13	AO2 gain	$-10.00-10.00$	1.00

These parameters are used to correct the zero drift of analog output and the output amplitude deviation. They can also be used to define the desired AO curve.

If "b" represents zero offset, "k" represents gain, " Y " represents actual output, and "X" represents standard output, the actual output is: $Y=k X+b$.

The zero offset coefficient 100% of AO1 and AO2 corresponds to 10 V (or 20 mA). The standard output refers to the value corresponding to the analog output of 0 to 10 V (or 0 to 20 mA) with no zero offset or gain adjustment.

For example, if the analog output is used as the running frequency, and it is expected that the output is 8 V when the frequency is 0 and 3 V at the maximum frequency, the gain shall be set to -0.50 , and the zero offset shall be set to 80%.

Function Code	Parameter Name	Setting Range	Default
P5-17	FMR output delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s
P5-18	Relay 1 output delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s
P5-19	Relay 2 output delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s
P5-20	DO1 output delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s
P5-21	DO2 output delay time	$0.0-3600.0 \mathrm{~s}$	0.0 s

These parameters are used to set the delay time of output terminals FMR, relay 1 , relay 2 , DO1 and DO2 from status change to actual output.

Function Code	Parameter Name	Setting Range	Default
P5-22	DO valid mode selection	Unit's digit (FMR valid mode)	00000
		0: Positive logic 1: Negative logic	
		Ten's digit (Relay 1 valid mode)	
		0, 1 (same as FMR)	
		Hundred's digit (Relay 2 valid mode)	
		0, 1 (same as FMR)	
		Thousand's digit (DO1 valid mode)	
		0,1 (same as FMR)	
		Ten thousand's digit (DO2 valid mode)	
		0,1 (same as FMR)	

It is used to set the logic of output terminals FMR, relay 1, relay 2, DO1 and DO2.

- 0: Positive logic

The output terminal is valid when being connected with COM, and invalid when being disconnected from COM.

- 1: Positive logic

The output terminal is invalid when being connected with COM, and valid when being disconnected from COM.

Group P6: Start/Stop Control

Function Code	Parameter Name	Setting Range	Default
P6-00	Start mode	0: Direct start 1: Rotational speed tracking restart 2: Pre-excited start (asynchronous motor)	0

- 0: Direct start
- If the DC braking time is set to 0 , the $A C$ drive starts to run at the startup frequency.
- If the DC braking time is not 0 , the AC drive performs DC braking first and then starts to run at the startup frequency. It is applicable to small-inertia load application where the motor is likely to rotate at startup.
- 1: Rotational speed tracking restart

The AC drive judges the rotational speed and direction of the motor first and then starts at the tracked frequency. Such smooth start has no impact on the rotating motor. It is applicable to the restart upon instantaneous power failure of large-inertia load. To ensure the performance of rotational speed tracking restart, set the motor parameters in group P1 correctly.

- 2: Pre-excited start (asynchronous motor)

It is valid only for asynchronous motor and used for building the magnetic field before the motor runs. For pre-excited current and pre-excited time, see parameters of P6-05 and P6-06.

- If the pre-excited time is 0 , the AC drive cancels pre-excitation and starts to run at startup frequency.
- If the pre-excited time is not 0 , the $A C$ drive pre-excites first before startup, improving the dynamic response of the motor.

Function Code	Parameter Name	Setting Range	Default
P6-01	Rotational speed tracking mode	0: From frequency at stop 1: From zero speed 2: From maximum frequency	0

To complete the rotational speed tracking process within the shortest time, select the proper mode in which the AC drive tracks the motor rotational speed.

- 0: From frequency at stop

It is the commonly selected mode.

- 1: From zero frequency

It is applicable to restart after a long time of power failure.

- 2: From the maximum frequency

It is applicable to the power-generating load.

Function Code	Parameter Name	Setting Range	Default
P6-02	Rotational speed tracking speed	$1-100$	20

In the rotational speed tracking restart mode, select the rotational speed tracking speed. The larger the value is, the faster the tracking is. However, too large value may cause unreliable tracking.

Function Code	Parameter Name	Setting Range	Default
P6-03	Startup frequency	$0.00-10.00 \mathrm{~Hz}$	0.00 Hz
P6-04	Startup frequency holding time	$0.0-100.0 \mathrm{~s}$	0.0 s

To ensure the motor torque at AC drive startup, set a proper startup frequency. In addition, to build excitation when the motor starts up, the startup frequency must be held for a certain period.

The startup frequency (P6-03) is not restricted by the frequency lower limit. If the set target frequency is lower than the startup frequency, the AC drive will not start and stays in the standby state.

During switchover between forward rotation and reverse rotation, the startup frequency holding time is disabled. The holding time is not included in the acceleration time but in the running time of simple PLC.

Example 1:

P0-03 $=0$	The frequency source is digital setting.
$P 0-08=2.00 \mathrm{~Hz}$	The digital setting frequency is 2.00 Hz.
$\mathrm{P} 6-03=5.00 \mathrm{~Hz}$	The startup frequency is 5.00 Hz.
$\mathrm{P6} 64=2.0 \mathrm{~s}$	The startup frequency holding time is 2.0s.

In this example, the AC drive stays in the standby state and the output frequency is 0.00 Hz .

Example 2

$\mathrm{P} 0-03=0$	The frequency source is digital setting.
$\mathrm{P} 0-08=10.00 \mathrm{~Hz}$	The digital setting frequency is 10.00 Hz.
$\mathrm{P} 6-03=5.00 \mathrm{~Hz}$	The startup frequency is 5.00 Hz.
$\mathrm{P} 6-04=2.0 \mathrm{~s}$	The startup frequency holding time is 2.0 s.

In this example, the AC drive accelerates to 5.00 Hz , and then accelerates to the set frequency 10.00 Hz after 2s.

Function Code	Parameter Name	Setting Range	Default
P6-05	Startup DC braking current/Pre-excited current	$0 \%-100 \%$	0%
P6-06	Startup DC braking time/Pre-excited time	$0.0-100.0 \mathrm{~s}$	0.0 s

Startup DC braking is generally used during restart of the AC drive after the rotating motor stops. Pre-excitation is used to make the AC drive build magnetic field for the asynchronous motor before startup to improve the responsiveness.

Startup DC braking is valid only for direct start ($\mathrm{P} 6-00=0$). In this case, the AC drive performs DC braking at the set startup DC braking current. After the startup DC braking time, the AC drive starts to run. If the startup DC braking time is 0 , the $A C$ drive starts directly without DC braking. The larger the startup DC braking current is, the larger the braking force is.

If the startup mode is pre-excited start ($\mathrm{P} 6-00=3$), the AC drive builds magnetic feld based on the set pre-excited current. After the pre-excited time, the AC drive starts to run. If the pre-excited time is 0 , the AC drive starts directly without pre-excitation.

The startup DC braking current or pre-excited current is a percentage relative to the base value.

- If the rated motor current is less than or equal to 80% of the rated AC drive current, the base value is the rated motor current.
- If the rated motor current is greater than 80% of the rated AC drive current, the base value is 80% of the rated AC drive current.

Function Code	Parameter Name	Setting Range	Default
P6-07	Acceleration/	0: Linear acceleration/deceleration	
Deceleration mode	1: S-curve acceleration/deceleration A 2: S-curve acceleration/deceleration B	0	

It is used to set the frequency change mode during the AC drive start and stop process.

- 0: Linear acceleration/deceleration

The output frequency increases or decreases in linear mode. The G1100 provides four group of acceleration/deceleration time, which can be selected by usingP4-00 to P4-08.

- 1: S-curve acceleration/deceleration A

The output frequency increases or decreases along the S curve. This mode is generally used in the applications where start and stop processes are relatively smooth, such as elevator and conveyor belt. P6-08 and P6-09 respectively defne the time proportions of the start segment and the end segment.

- 2: S-curve acceleration/deceleration B

In this curve, the rated motor frequency f_{b} is always the inflexion point. This mode is usually used in applications where acceleration/deceleration is required at the speed higher than the rated frequency.

When the set frequency is higher than the rated frequency, the acceleration/ deceleration time is:

$$
t=\left(\frac{4}{9} \times\left(\frac{f}{f_{b}}\right)^{2}+\frac{5}{9}\right) \times T
$$

In the formula, f is the set frequency, f_{b} is the rated motor frequency and T is the acceleration time from 0 Hz to $\quad f_{b}$.

Function Code	Parameter Name	Setting Range	Default
P6-08	Time proportion of S-curve start segment	0.0% to (100.0\% - P6-09)	30.0%
P6-09	Time proportion of S-curve end segment	0.0% to (100.0\% - P6-08)	30.0%

These two parameters respectively define the time proportions of the start segment and the end segment of S-curve acceleration/deceleration. They must satisfy the requirement: P6-08 + P6-09 $\leq 100.0 \%$.

In Figure $5-12, \mathrm{t} 1$ is the time defned in P6-08, within which the slope of the output frequency change increases gradually. t2 is the time defned in P6-09, within which the slope of the output frequency change gradually decreases to 0 . Within the time between t 1 and t 2 , the slope of the output frequency change remains unchanged, that is, linear acceleration/ deceleration.

Figure 5-12 S-curve acceleration/deceleration A

Figure 5-13 S-curve acceleration/deceleration B

Function Code	Parameter Name	Setting Range	Default
P6-10	Stop mode	0: Decelerate to stop 1: Coast to stop	0

- 0: Decelerate to stop

After the stop command is enabled, the AC drive decreases the output frequency according to the deceleration time and stops when the frequency decreases to zero.

- 1: Coast to stop

After the stop command is enabled, the AC drive immediately stops the output. The motor will coast to stop based on the mechanical inertia.

Function Code	Parameter Name	Setting Range	Default
P6-11	Initial frequency of stop DC braking	0.00 Hz to maximum frequency	0.00 Hz
P6-12	Waiting time of stop DC braking	$0.0-36.0 \mathrm{~s}$	0.0 s
P6-13	Stop DC braking current	$0 \%-100 \%$	0%
P6-14	Stop DC braking time	$0.0-36.0 \mathrm{~s}$	0.0 s

- P6-11 (Initial frequency of stop DC braking)

During the process of decelerating to stop, the AC drive starts DC braking when the running frequency is lower than the value set in P6-11.

- P6-12 (Waiting time of stop DC braking)

When the running frequency decreases to the initial frequency of stop DC braking, the AC drive stops output for a certain period and then starts DC braking. This prevents faults such as overcurrent caused due to DC braking at high speed.

- P6-13 (Stop DC braking current)

This parameter specifies the output current at DC braking and is a percentage relative to the base value.

- If the rated motor current is less than or equal to 80% of the rated AC drive current, the base value is the rated motor current.
- If the rated motor current is greater than 80% of the rated AC drive current, the base value is 80% of the rated AC drive current.
- P6-14 (Stop DC braking time)

This parameter specifies the holding time of DC braking. If it is set to $0, D C$ braking is cancelled.

The stop DC braking process is shown in the following figure
Figure 5-14 Stop DC braking process

Function Code	Parameter Name	Setting Range	Default
P6-15	Brake use ratio	$0 \%-100 \%$	100%

It is valid only for the AC drive with internal braking unit and used to adjust the duty ratio of the braking unit. The larger the value of this parameter is, the better the braking result will be. However, too larger value causes great fluctuation of the AC drive bus voltage during the braking process.

Group P7: Operation Panel and Display

Function Code	Parameter Name	Setting Range	Default
		0: MF.K key disabled 1: Switchover between operation panel control and remote command control (terminal or communication)	
P7-01	MF.K Key function selection	2: Switchover between forward rotation and reverse rotation 3: Forward JOG 4: Reverse JOG	0

MF.K key refers to multifunctional key. You can set the function of the MF.K key by using this parameter. You can perform switchover by using this key both in stop or running state.

- 0: MF.K key disabled

This key is disabled.

- 1: Switchover between operation panel control and remote command control (terminal or communication)

You can perform switchover from the current command source to the operation panel control (local operation). If the current command source is operation panel control, this key is invalid.

- 2: Switchover between forward rotation and reverse rotation

You can change the direction of the frequency reference by using the MF.K key. It is valid only when the current command source is operation panel control.

- 3: Forward JOG

You can perform forward JOG (FJOG) by using the MF.K key.

- 4: Reverse JOG

You can perform reverse JOG (FJOG) by using the MF.K key.

Function Code	Parameter Name	Setting Range	Default
P7-02	STOP/RESET key function	0: STOP/RESET key enabled only in operation panel control 1: STOP/RESET key enabled in any operation mode	1

These two parameters are used to set the parameters that can be viewed when the AC drive is in the running state. You can view a maximum of 32 running state parameters that are displayed from the lowest bit of P7-03.

Function Code	Parameter Name	Setting Range	Default
P7-06	Load speed display coefficient	$0.0001-6.5000$	1.0000

This parameter is used to adjust the relationship between the output frequency of the AC drive and the load speed. For details, see the description of P7-12.

Function Code	Parameter Name	Setting Range	Default
P7-07	Heatsink temperature of inverter module	$0.0-100.0^{\circ} \mathrm{C}$	-

It is used to display the insulated gate bipolar transistor (IGBT) temperature of the inverter module, and the IGBT overheat protection value of the inverter module depends on the model.

Function Code	Parameter Name	Setting Range	Default
P7-08	Temporary software version	$0.0-100.0^{\circ} \mathrm{C}$	-

Ilt is used to display the temporary software version of the control board.

Function Code	Parameter Name	Setting Range	Default
P7-09	Accumulative running time	$0-65535 \mathrm{~h}$	-

It is used to display the accumulative running time of the AC drive. After the accumulative running time reaches the value set in P8-17, the terminal with the digital output function 12 becomes ON.

Function Code	Parameter Name	Setting Range	Default
P7-10	Product number	AC drive product number	-
	P7-11	Software version	Software version of control board
	Number of decimal	0: 0 decimal place	-
P7-12	places for load speed	1 decimal place	
	display 2 decimal places		
	$3: 3$ decimal places	1	

P7-12 is used to set the number of decimal places for load speed display. The following gives an example to explain how to calculate the load speed:

Assume that P7-06 (Load speed display coefficient) is 2.000 and P7-12 is 2 (2 decimal places). When the running frequency of the AC drive is 40.00 Hz , the load speed is 40.00 x $2.000=80.00$ (display of 2 decimal places).

If the AC drive is in the stop state, the load speed is the speed corresponding to the set frequency, namely, "set load speed". If the set frequency is 50.00 Hz , the load speed in the stop state is $50.00 \times 2.000=100.00$ (display of 2 decimal places).

Function Code	Parameter Name	Setting Range	Default
P7-13	Accumulative power-on time	$0-65535 \mathrm{~h}$	0 h

It is used to display the accumulative power-on time of the AC drive since the delivery. If the time reaches the set power-on time (P8-17), the terminal with the digital output function 24 becomes ON.

Function Code	Parameter Name	Setting Range	Default
P7-14	Accumulative power consumption	$0-65535 \mathrm{kWh}$	$/$

It is used to display the accumulative power consumption of the AC drive until now.

Group P8: Auxiliary Functions

Function Code	Parameter Name	Setting Range	Default
P8-00	JOG running frequency	0.00 Hz to maximum frequency	2.00 Hz
P8-01	JOG acceleration time	$0.0-6500.0 \mathrm{~s}$	20.0 s
P8-02	JOG deceleration time	$0.0-6500.0 \mathrm{~s}$	20.0 s

These parameters are used to define the set frequency and acceleration/deceleration time of the AC drive when jogging. The startup mode is "Direct start" (P6-00 = 0) and the stop mode is "Decelerate to stop" (P6-10 = 0) during jogging.

Function Code	Parameter Name	Setting Range	Default
P8-03	Acceleration time 2	$0.0-6500.0 \mathrm{~s}$	Model dependent
P8-04	Deceleration time 2	$0.0-6500.0 \mathrm{~s}$	Model dependent
P8-05	Acceleration time 3	$0.0-6500.0 \mathrm{~s}$	Model dependent
P8-06	Deceleration time 3	$0.0-6500.0 \mathrm{~s}$	Model dependent
P8-07	Acceleration time 4	$0.0-500.0 \mathrm{~s}$	Model dependent
P8-08	Deceleration time 4	$0.0-6500.0 \mathrm{~s}$	Model dependent

The G1100 provides a total of four groups of acceleration/deceleration time, that is, the preceding three groups and the group defined by P0-17 and P0-18. Def Oinitions of four groups are completely the same. You can switch over between the four groups of acceleration/deceleration time through different state combinations of DI terminals. For more details, see the descriptions of P4-01 to P4-05.

Function Code	Parameter Name	Setting Range	Default
P8-09	Jump frequency 1	0.00 Hz to maximum frequency	0.00 Hz
P8-10	Jump frequency 2	0.00 Hz to maximum frequency	0.00 Hz
P8-11	Frequency jump amplitude	0.00 Hz to maximum frequency	0.00 Hz

If the set frequency is within the frequency jump range, the actual running frequency is the jump frequency close to the set frequency. Setting the jump frequency helps to avoid the mechanical resonance point of the load.

The G1100 supports two jump frequencies. If both are set to 0 , the frequency jump function is disabled. The principle of the jump frequencies and jump amplitude is shown in the following figure

Figure 5-15 Principle of the jump frequencies and jump amplitude

Function Code	Parameter Name	Setting Range	Default
P8-12	Forward/Reverse rotation dead-zone time	$0.0-3000.0 \mathrm{~s}$	0.0 s

It is used to set the time when the output is 0 Hz at transition of the AC drive forward rotation and reverse rotation, as shown in the following figure

Figure 5-16 Forward/Reverse rotation dead-zone time

Function Code	Parameter Name	Setting Range	Default
P8-13	Reverse control	0: Enabled 1: Disabled	0

It is used to set whether the AC drive allows reverse rotation. In the applications where reverse rotation is prohibited, set this parameter to 1.

Function Code	Parameter Name	Setting Range	Default
P8-14	Running mode when set frequency lower than frequency lower limit	0: Run at frequency lower limit 1: Stop 2: Run at zero speed	0

It is used to set the AC drive running mode when the set frequency is lower than the frequency lower limit. The G1100 provides three running modes to satisfy requirements of various applications.

Function Code	Parameter Name	Setting Range	Default
P8-15	Droop control	$0.00-10.00 \mathrm{~Hz}$	0.00 Hz

This function is used for balancing the workload allocation when multiple motors are used to drive the same load. The output frequency of the AC drives decreases as the load increases. You can reduce the workload of the motor under load by decreasing the output frequency for this motor, implementing workload balancing between multiple motors.

Function Code	Parameter Name	Setting Range	Default
P8-16	Accumulative power-on time threshold	$0-65000 \mathrm{~h}$	0 h

If the accumulative power-on time (P7-13) reaches the value set in this parameter, the corresponding DO terminal becomes ON.

For example, combining virtual DI/DO functions, to implement the function that the AC drive reports an alarm when the actual accumulative power-on time reaches the threshold of 100 hours, perform the setting as follows:

1) Set virtual DI1 to user-defined fault 1: A1-00 $=44$.
2) Set that the valid state of virtual DI1 is from virtual DO1: A1-05 $=0000$.
3) Set virtual DO1 to power-on time reached: A1-11= 24.
4) Set the accumulative power-on time threshold to $100 \mathrm{~h}: ~ P 8-16=100 \mathrm{~h}$.

Then, the AC drive reports Err27 when the accumulative power-on time reaches 100 hours.

Function Code	Parameter Name	Setting Range	Default
P8-17	Accumulative running time threshold	$0-65000 \mathrm{~h}$	0 h

It is used to set the accumulative running time threshold of the AC drive. If the accumulative running time (P7-09) reaches the value set in this parameter, the corresponding DO terminal becomes ON.

Function Code	Parameter Name	Setting Range	Default
P8-18	Startup protection	0: No 1: Yes	0

This parameter is used to set whether to enable the safety protection. If it is set to 1 , the AC drive does not respond to the run command valid upon AC drive power-on (for example, an input terminal is ON before power-on). The AC drive responds only after the run command is cancelled and becomes valid again.

In addition, the AC drive does not respond to the run command valid upon fault reset of the AC drive. The run protection can be disabled only after the run command is cancelled.

In this way, the motor can be protected from responding to run commands upon power-on or fault reset in unexpected conditions.

Function Code	Parameter Name	Setting Range	Default
P8-19	Frequency detection value (FDT1)	0.00 Hz to maximum frequency	50.00 Hz
P8-20	Frequency detection hysteresis (FDT hysteresis 1)	$0.0 \%-100.0 \%$ (FDT1 level)	5.0%

If the running frequency is higher than the value of $\mathrm{P} 8-19$, the corresponding DO terminal becomes ON. If the running frequency is lower than value of P8-19, the DO terminal goes OFF

These two parameters are respectively used to set the detection value of output frequency and hysteresis value upon cancellation of the output. The value of P8-20 is a percentage of the hysteresis frequency to the frequency detection value (P8-19).

The FDT function is shown in the following figure
Figure 5-17 FDT level

Function Code	Parameter Name	Setting Range	Default
P8-21	Detection range of frequency reached	$0.00-100 \%$ (maximum frequency)	0.0%

If the $A C$ drive running frequency is within the certain range of the set frequency, the corresponding DO terminal becomes ON.

This parameter is used to set the range within which the output frequency is detected to reach the set frequency. The value of this parameter is a percentage relative to the maximum frequency. The detection range of frequency reached is shown in the following figure

Figure 5-18 Detection range of frequency reached

Function Code	Parameter Name	Setting Range	Default
P8-22	Jump frequency during acceleration/deceleration	0: Disabled 1: Enabled	0

It is used to set whether the jump frequencies are valid during acceleration/deceleration.
When the jump frequencies are valid during acceleration/deceleration, and the running frequency is within the frequency jump range, the actual running frequency will jump over the set frequency jump amplitude (rise directly from the lowest jump frequency to the highest jump frequency). The following figure shows the diagram when the jump frequencies are valid during acceleration/deceleration.

Figure 5-19 Diagram when the jump frequencies are valid during acceleration/deceleration

This function is valid when motor 1 is selected and acceleration/deceleration time switchover is not performed by means of DI terminal. It is used to select different groups of acceleration/ deceleration time based on the running frequency range rather than DI terminal during the running process of the AC drive.

Figure 5-20 Acceleration/deceleration time switchover

During acceleration, if the running frequency is smaller than the value of P8-25, acceleration time 2 is selected. If the running frequency is larger than the value of P8-25, acceleration time 1 is selected.

During deceleration, if the running frequency is larger than the value of P8-26, deceleration time 1 is selected. If the running frequency is smaller than the value of P8-26, deceleration time 2 is selected.

Function Code	Parameter Name	Setting Range	Default
P8-27	Terminal JOG preferred	0: Disabled $1:$ Enabled	0

It is used to set whether terminal JOG is preferred.
If terminal JOG is preferred, the AC drive switches to terminal JOG running state when there is a terminal JOG command during the running process of the AC drive.

Function Code	Parameter Name	Setting Range	Default
P8-28	Frequency detection value (FDT2)	0.00 to maximum frequency	50.00 Hz
P8-29	Frequency detection hysteresis (FDT hysteresis 2)	$0.0 \%-100.0 \% ~(F D T 2 ~$ level)	5.0%

The frequency detection function is the same as FDT1 function. For details, refer to the descriptions of P8-19 and P8-20.

Function Code	Parameter Name	Setting Range	Default
P8-30	Any frequency reaching detection value 1	0.00 Hz to maximum frequency	50.00 Hz
P8-31	Any frequency reaching detection amplitude 1	$0.0 \%-100.0 \%$ (maximum frequency)	0.0%
P8-32	Any frequency reaching detection value 2	0.00 Hz to maximum frequency	50.00 Hz

Function Code	Parameter Name	Setting Range	Default
P8-33	Any frequency reaching detection amplitude 2	$0.0 \%-100.0 \%$ (maximum frequency)	0.0%

If the output frequency of the $A C$ drive is within the positive and negative amplitudes of the any frequency reaching detection value, the corresponding DO becomes ON.

The G1100 provides two groups of any frequency reaching detection parameters, including frequency detection value and detection amplitude, as shown in the following figure

Figure 5-21 Any frequency reaching detection

Function Code	Parameter Name	Setting Range	Default
P8-34	Zero current detection level	$0.0 \%-300.0 \%$ (rated motor current)	5.0%
P8-35	Zero current detection delay time	$0.00-600.00 \mathrm{~s}$	0.10 s

If the output current of the AC drive is equal to or less than the zero current detection level and the duration exceeds the zero current detection delay time, the corresponding DO becomes ON. The zero current detection is shown in the following figure

Figure 5-22 Zero current detection

Function Code	Parameter Name	Setting Range	Default
P8-36	Output overcurrent threshold	0.0% (no detection) $0.1 \%-300.0 \%$ (rated motor current)	200.0%
P8-37	Output overcurrent detection delay time	$0.00-600.00 \mathrm{~s}$	0.00 s

If the output current of the AC drive is equal to or higher than the overcurrent threshold and the duration exceeds the detection delay time, the corresponding DO becomes ON. The output overcurrent detection function is shown in the following figure

Figure 5-23 Output overcurrent detection

Function Code	Parameter Name	Setting Range	Default
P8-38	Any current reaching 1	$0.0 \%-300.0 \%$ (rated motor current)	100.0%
P8-39	Any current reaching 1 amplitude	$0.0 \%-300.0 \%$ (rated motor current)	0.0%
P8-40	Any current reaching 2	$0.0 \%-300.0 \%$ (rated motor current)	100.0%
P8-41	Any current reaching 2 amplitude	$0.0 \%-300.0 \%$ (rated motor current)	0.0%

If the output current of the AC drive is within the positive and negative amplitudes of any current reaching detection value, the corresponding DO becomes ON.

The G1100 provides two groups of any current reaching detection parameters, including current detection value and detection amplitudes, as shown in the following figure

Figure 5-24 Any current reaching detection

Function Code	Parameter Name	Setting Range	Default
P8-42	Timing function	0: Disabled 1: Enabled	0
P8-43	Timing duration source	0: P8-44 1: Al1 2: Al2 3: Al3 (100\% of analog input corresponds to the value of P8-44)	0
P8-44	Timing duration	0.0-6500.0 min	0.0 min

These parameters are used to implement the AC drive timing function.
If P8-42 is set to 1 , the AC drive starts to time at startup. When the set timing duration is reached, the AC drive stops automatically and meanwhile the corresponding DO becomes ON.

The AC drive starts timing from 0 each time it starts up and the remaining timing duration can be queried by U0-20.

The timing duration is set in $\mathrm{P} 8-43$ and $\mathrm{P} 8-44$, in unit of minute.

Function Code	Parameter Name	Setting Range	Default
P8-45	Al1 input voltage lower limit	0.00 V to P8-46	3.10 V
P8-46	Al1 input voltage upper limit	P8-45 to 10.00 V	6.80 V

These two parameters are used to set the limits of the input voltage to provide protection on the AC drive. When the Al1 input is larger than the value of P8-46 or smaller than the value of P8-45, the corresponding DO becomes ON, indicating that A11 input exceeds the limit.

Function Code	Parameter Name	Setting Range	Default
P8-47	Module temperature threshold	$0-75^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$

When the heatsink temperature of the AC drive reaches the value of this parameter, the corresponding DO becomes ON, indicating that the module temperature reaches the threshold.

Function Code	Parameter Name	Setting Range	Default
P8-48	Cooling fan control	0: Fan working during running 1: Fan working continuously	0

It is used to set the working mode of the cooling fan. If this parameter is set to 0 , the fan works when the AC drive is in running state. When the AC drive stops, the cooling fan works if the heatsink temperature is higher than $40^{\circ} \mathrm{C}$, and stops working if the heatsink temperature is lower than $40^{\circ} \mathrm{C}$.

If this parameter is set to 1 , the cooling fan keeps working after power-on.

Function Code	Parameter Name	Setting Range	Default
P8-49	Wakeup frequency	Dormant frequency (P8-51) to maximum frequency (P0-10)	0.00 Hz
P8-50	Wakeup delay time	$0.0-6500.0 \mathrm{~s}$	0.0 s
P8-51	Dormant frequency	0.00 Hz to wakeup frequency (P8-49)	0.00 Hz
P8-52	Dormant delay time	$0.0-6500.0 \mathrm{~s}$	0.0 s

These parameters are used to implement the dormant and wakeup functions in the water supply application.

When the AC drive is in running state, the AC drive enters the dormant state and stops automatically after the dormant delay time (P8-52) if the set frequency is lower than or equal to the dormant frequency (P8-51).

When the AC drive is in dormant state and the current running command is effective, the AC drives starts up after the wakeup delay time (P8-50) if the set frequency is higher than or equal to the wakeup frequency (P8-49).

Generally, set the wakeup frequency equal to or higher than the dormant frequency. If the wakeup frequency and dormant frequency are set to 0 , the dormant and wakeup functions are disabled.

When the dormant function is enabled, if the frequency source is PID, whether PID operation is performed in the dormant state is determined by PA-28. In this case, select PID operation enabled in the stop state (PA-28 = 1).

Function Code	Parameter Name	Setting Range	Default
P8-53	Current running time reached	$0.0-6500.0 \mathrm{~min}$	0.0 min

If the current running time reaches the value set in this parameter, the corresponding DO becomes ON , indicating that the current running time is reached.

Function Code	Parameter Name	Setting Range	Default
P8-54	Output power correction coefficient	$0.00 \%-200.0 \%$	100.0%

When the output power (U0-05) is not equal to the required value, you can perform linear correction on output power by using this parameter.

Group P9: Fault and Protection

Function Code	Parameter Name	Setting Range	Default
P9-00	Motor overload protection selection	0: Disabled $1:$ Enabled	1
P9-01	Motor overload protection gain	$0.20-10.00$	1.00

- $\mathrm{P} 9-00=0$

The motor overload protective function is disabled. The motor is exposed to potential damage due to overheating. A thermal relay is suggested to be installed between the $A C$ drive and the motor.

- $\quad \mathrm{P} 9-00=1$

The AC drive judges whether the motor is overloaded according to the inverse time-lag curve of the motor overload protection.

The inverse time-lag curve of the motor overload protection is:
$220 \% \times$ P9-01 x rated motor current (if the load remains at this value for one minute, the AC drive reports motor overload fault), or
150% x P9-01 x rated motor current (if the load remains at this value for 60 minutes, the AC drive reports motor overload fault)

Set P9-01 properly based on the actual overload capacity. If the value of P9-01 is set too large, damage to the motor may result because the motor overheats but the AC drive does not report the alarm.

Function Code	Parameter Name	Setting Range	Default
P9-02	Motor overload warning coefficient	$50 \%-100 \%$	80%

This function is used to give a warning signal to the control system via DO before motor overload protection. This parameter is used to determine the percentage, at which prewarning is performed before motor overload. The larger the value is, the less advanced the pre-warning will be.

When the accumulative output current of the AC drive is greater than the value of the overload inverse time-lag curve multiplied by P9-02, the DO terminal on the AC drive allocated with function 6 (Motor overload pre-warning) becomes ON.

Function Code	Parameter Name	Setting Range	Default
P9-03	Overvoltage stall gain	0 (no stall overvoltage)-100	0
P9-04	Overvoltage stall protective voltage	$120 \%-150 \%$	130%

When the DC bus voltage exceeds the value of P9-04 (Overvoltage stall protective voltage) during deceleration of the AC drive, the AC drive stops deceleration and keeps the present running frequency. After the bus voltage declines, the AC drive continues to decelerate.

P9-03 (Overvoltage stall gain) is used to adjust the overvoltage suppression capacity of the AC drive. The larger the value is, the greater the overvoltage suppression capacity will be.

In the prerequisite of no overvoltage occurrence, set P9-03 to a small value.
For small-inertia load, the value should be small. Otherwise, the system dynamic response will be slow. For large-inertia load, the value should be large. Otherwise, the suppression result will be poor and an overvoltage fault may occur.

If the overvoltage stall gain is set to 0 , the overvoltage stall function is disabled. The overvoltage stall protective voltage setting 100% corresponds to the base values in the following table:

Table 5-7 Overvoltage stall protective voltage setting 100% corresponds to base values

Voltage Class	Corresponding Base Value
Three-phase 380 V	530 V

Function Code	Parameter Name	Setting Range	Default
P9-05	Overcurrent stall gain	$0-100$	20
P9-06	Overcurrent stall protective current	$100 \%-200 \%$	150%

When the output current exceeds the overcurrent stall protective current during acceleration/ deceleration of the AC drive, the AC drive stops acceleration/deceleration and keeps the present running frequency. After the output current declines, the AC drive continues to accelerate/decelerate.

P9-05 (Overcurrent stall gain) is used to adjust the overcurrent suppression capacity of the AC drive. The larger the value is, the greater the overcurrent suppression capacity will be. In the prerequisite of no overcurrent occurrence, set P9-05 to a small value.

For small-inertia load, the value should be small. Otherwise, the system dynamic response will be slow. For large-inertia load, the value should be large. Otherwise, the suppression result will be poor and overcurrent fault may occur.

If the overcurrent stall gain is set to 0 , the overcurrent stall function is disabled.

Figure 5-25 Diagram of the overcurrent stall protection function

It is used to determine whether to check the motor is short-circuited to ground at power-on of the AC drive. If this function is enabled, the AC drive's UVW will have voltage output a while after power-on.

Function Code	Parameter Name	Setting Range	Default
P9-09	Fault auto reset times	$0-20$	0

It is used to set the times of fault auto resets if this function is used. After the value is exceeded, the AC drive will remain in the fault state.

Function Code	Parameter Name	Setting Range	Default
P9-10	DO action during fault auto reset	0: Not act 1 : Act	0

It is used to decide whether the DO acts during the fault auto reset if the fault auto reset function is selected.

Function Code	Parameter Name	Setting Range	Default
P9-11	Time interval of fault auto reset	$0.1 \mathrm{~s}-100.0 \mathrm{~s}$	1.0 s

It is used to set the waiting time from the alarm of the AC drive to fault auto reset.

Function Code	Parameter Name	Setting Range	Default
	Input phase loss protection/contactor energizing protection selection	Unit's digit: Input phase loss protection Ten's digit: Contactor energizing protection 0: Disabled 1: Enabled	11

It is used to determine whether to perform input phase loss or contactor energizing protection.

The G1100 models that provide this function are listed in the following table.
Table 5-8 G1100 models providing the input phase loss or contactor energizing Oprotection function

Voltage Class	Models
Three-phase 380 V	18.5 kW G model

For every voltage class, the G1100 AC drives of powers equal to or greater than those listed in the preceding table provide the function of input phase loss or contactor energizing protection. The G1100 AC drives below the power listed in the table do not have the function no matter whether P9-12 is set to 0 or 1 .

Function Code	Parameter Name	Setting Range	Default
P9-13	Output phase loss protection selection	0: Disabled 1: Enabled	1

It is used to determine whether to perform output phase loss protection.

Function Code	Name	Setting Range
P9-14	1st fault type	$0-99$
P9-15	2nd fault type	
P9-16	3rd (latest) fault type	

It is used to record the types of the most recent three faults of the AC drive. 0 indicates no fault. For possible causes and solution of each fault, refer to Chapter 8.

Function Code	Parameter Name	Description
P9-17	Frequency upon 3rd fault	It displays the frequency when the latest fault occurs.
P9-18	Current upon 3rd fault	It displays the current when the latest fault occurs.
P9-19	Bus voltage upon 3rd fault	It displays the bus voltage when the latest fault occurs.

Function Code	Parameter Name	Setting Range	Default
P9-47	Fault protection action selection 1	Unit's digit (Motor overload, Err11)	00000
		0: Coast to stop 1: Stop according to the stop mode 2: Continue to run	
		Ten's digit (Power input phase loss, Err12)	
		Same as unit's digit	
		Hundred's digit (Power output phase loss, Err13)	
		Same as unit's digit	
		Thousand's digit (External equipment fault, Err15)	
		Same as unit's digit	
		Ten thousand's digit (Communication fault, Err16)	
		Same as unit's digit	
P9-48	Fault protection action selection 2	Unit's digit (Encoder fault, Err20)	00000
		0: Coast to stop 1: Switch over to V/F control, stop according to the stop mode 2: Switch over to V/F control, continue to run	
		Ten's digit (EEPROM read-write fault, Err21)	
		0: Coast to stop 1: Stop according to the stop mode	
		Hundred's digit: reserved	
		Thousand's digit (Motor overheat, Err25)	
		Same as unit's digit in P9-47	
		Ten thousand's digit (Accumulative running time reached)	
		Same as unit's digit in P9-47	

Function Code	Parameter Name	Setting Range	Default
P9-49	Fault protection action selection 3	Unit's digit (User-defined fault 1, Err27)	00000
		Same as unit's digit in P9-47	
		Ten's digit (User-defined fault 2, Err28)	
		Same as unit's digit in P9-47	
		Hundred's digit (Accumulative power-on time reached, Err29)	
		Same as unit's digit in P9-47	
		Thousand's digit (Load becoming 0, Err30)	
		0: Coast to stop 1: Stop according to the stop mode 2: Continue to run at 7% of rated motor frequency and resume to the set frequency if the load recovers	
		Ten thousand's digit (PID feedback lost during running, Err31)	
		Same as unit's digit in P9-47	
P9-50	Fault protection action selection 4	Unit's digit (Too large speed deviation, Err42)	00000
		Same as unit's digit in P9-47	
		Ten's digit (Motor over-speed, Err43)	
		Same as unit's digit in P9-47	
		Hundred's digit (Initial position fault, Err51)	
		Same as unit's digit in P9-47	
		Thousand's digit (Speed feedback fault, Err52)	
		Same as unit's digit in P9-47	
		Ten thousand's digit: Reserved	

If "Coast to stop" is selected, the AC drive displays Err** and directly stops.

- If "Stop according to the stop mode" is selected, the AC drive displays $\mathrm{A}^{* *}$ and stops according to the stop mode. After stop, the AC drive displays Err**.
- If "Continue to run" is selected, the AC drive continues to run and displays $\mathrm{A}^{* *}$. The running frequency is set in P9-54.

Function Code	Parameter Name	Setting Range	Default
	P9-54	Frequency selection for continuing to run upon fault	0: Current running frequency 1: Set frequency 2: Frequency upper limit 3: Frequency lower limit 4: Backup frequency upon abnormality
P9-55	Backup frequency upon abnormality	$0.0 \%-100.0 \%$ (maximum frequency)	100.0%

If a fault occurs during the running of the AC drive and the handling of fault is set to "Continue to run", the AC drive displays $\mathrm{A}^{* *}$ and continues to run at the frequency set in P9-54.

The setting of P9-55 is a percentage relative to the maximum frequency.

Function Code	Parameter Name	Setting Range	Default
P9-56	Type of motor temperature sensor	0: No temperature sensor 1: PT100 2: PT1000	0
P9-57	Motor overheat protection threshold	$0-200^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
P9-58	Motor overheat warning threshold	$0-200^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$

The signal of the motor temperature sensor needs to be connected to the optional I/O extension card. AI3 on the extension card can be used for the temperature signal input. The motor temperature sensor is connected to AI3 and PGND of the extension card. The AI3 terminal of the G1100 supports both PT100 and PT1000. Set the sensor type correctly during the use. You can view the motor temperature via U0-34.
If the motor temperature exceeds the value set in P9-57, the AC drive reports an alarm and acts according to the selected fault protection action.

If the motor temperature exceeds the value set in P9-58, the DO terminal on the AC drive allocated with function 39 (Motor overheat warning) becomes ON.

Function Code	Parameter Name	Setting Range	Default
P9-59	Action selection at instantaneous power failure	0: Invalid 1: Decelerate 2: Decelerate to stop	0
P9-60	Action pause judging voltage at instantaneous power failure	$80.0 \%-100.0 \%$	90.0%
P9-61	Voltage rally judging time at instantaneous power failure	$0.00-100.00 \mathrm{~s}$	0.50 s
P9-62	Action judging voltage at instantaneous power failure	$60.0 \%-100.0 \%$ (standard bus voltage)	80.0%

Upon instantaneous power failure or sudden voltage dip, the DC bus voltage of the AC drive reduces. This function enables the AC drive to compensate the DC bus voltage reduction with the load feedback energy by reducing the output frequency so as to keep the AC drive running continuously.

- If P9-59 $=1$, upon instantaneous power failure or sudden voltage dip, the AC drive decelerates. Once the bus voltage resumes to normal, the AC drive accelerates to the set frequency. If the bus voltage remains normal for the time exceeding the value set in P9-61, it is considered that the bus voltage resumes to normal.
- If P9-59 $=2$, upon instantaneous power failure or sudden voltage dip, the AC drive decelerates to stop.

Figure 5-26 AC drive action diagram upon instantaneous power failure

	Bus voltage on judging voltage at taneous power failure P9-62 Running frequency Action pause judging tage at instantaneous power failure P9-60 Running frequency Action pause judging tage at instantaneous power failure P9-60 power failure P9-60	Voltage rally instantaneous	ging time at ower failure \qquad time 4	
Function Code	Parame		Setting Range	Default
P9-63	Protection upon	oming 0	0: Disabled 1: Enabled	0
P9-64	Detection level o	coming 0	$0.0 \%-100.0 \% \text { (rated }$ motor current)	10.0\%
P9-65	Detection time of	coming 0	0.0-60.0s	1.0s

If protection upon load becoming 0 is enabled, when the output current of the AC drive is lower than the detection level (P9-64) and the lasting time exceeds the detection time (P9-65), the output frequency of the AC drive automatically declines to 7% of the rated frequency. During the protection, the AC drive automatically accelerates to the set frequency if the load resumes to normal.

Function Code	Parameter Name	Setting Range	Default
P9-67	Over-speed detection value	$0.0 \%-50.0 \%$ (maximum frequency)	20.0%
P9-68	Over-speed detection time	$0.0-60.0 \mathrm{~s}$	1.0 s

This function is valid only when the AC drive runs in the CLVC mode.
If the actual motor rotational speed detected by the AC drive exceeds the maximum frequency and the excessive value is greater than the value of P9-67 and the lasting time exceeds the value of P9-68, the AC drive reports Err43 and acts according to the selected fault protection action.

If the over-speed detection time is 0.0 s , the over-speed detection function is disabled.

Function Code	Parameter Name	Setting Range	Default
P9-69	Detection value of too large speed deviation	$0.0 \%-50.0 \%$ (maximum frequency)	20.0%
P9-70	Detection time of too large speed deviation	$0.0-60.0 \mathrm{~s}$	5.0 s

This function is valid only when the AC drive runs in the CLVC mode.
If the $A C$ drive detects the deviation between the actual motor rotational speed detected by the $A C$ drive and the set frequency is greater than the value of P9-69 and the lasting time exceeds the value of P9-70, the AC drive reports Err42 and according to the selected fault protection action.

If P9-70 (Detection time of too large speed deviation) is 0.0 s , this function is disabled.

Group PA: Process Control PID Function

PID control is a general process control method. By performing proportional, integral and differential operations on the difference between the feedback signal and the target signal, it adjusts the output frequency and constitutes a feedback system to stabilize the controlled counter around the target value.

It is applied to process control such as flow control, pressure control and temperature control. The following figure shows the principle block diagram of PID control

Figure 5-27 Principle block diagram of PID control

Function Code	Parameter Name	Setting Range	Default
		0: FA-01	
		1: Al1	
		2: Al2	
PA-00	PID setting source	3: Al3	0
		4: Pulse setting (DI5)	
		5: Communication setting	
		6: Multi-reference	
PA-01	PID digital setting	$0.0 \%-100.0 \%$	50.0%

PA-00 is used to select the channel of target process PID setting. The PID setting is a relative value and ranges from 0.0% to 100.0%. The PID feedback is also a relative value. The purpose of PID control is to make the PID setting and PID feedback equal.

Function Code	Parameter Name	Setting Range	Default			
PA-02	PID feedback source	0: Al1	0			
		1: Al2				
		2: Al3				
		3: Al1 - Al2				
		4: Pulse setting (DI5)				
		5: Communication setting				
		6: Al1 + Al2				
		7: MAX (\|AI1	,	AI2)	
		8: MIN (\|AI1	,	AI2)	

This parameter is used to select the feedback signal channel of process PID.
The PID feedback is a relative value and ranges from 0.0% to 100.0%.

Function Code	Parameter Name	Setting Range	Default
PA-03	PID action direction	0: Forward action 1: Reverse action	0

- 0: Forward action

When the feedback value is smaller than the PID setting, the AC drive's output frequency rises. For example, the winding tension control requires forward PID action.

- 1: Reverse action

When the feedback value is smaller than the PID setting, the AC drive's output frequency reduces. For example, the unwinding tension control requires reverse PID action.

Note that this function is influenced by the DI function 35 "Reverse PID action direction".

Function Code	Parameter Name	Setting Range	Default
PA-04	PID setting feedback range	$0-65535$	1000

This parameter is a non-dimensional unit. It is used for PID setting display (U0-15) and PID feedback display (U0-16).

Relative value 100% of PID setting feedback corresponds to the value of PA-04. If PA-04 is set to 2000 and PID setting is 100.0%, the PID setting display (U0-15) is 2000.

Function Code	Parameter Name	Setting Range	Default
PA-05	Proportional gain Kp1	$0.0-100.0$	20.0
PA-06	Integral time Ti1	$0.01-10.00 \mathrm{~s}$	2.00 s
PA-07	Differential time Td1	$0.00-10.000$	0.000 s

- PA-05 (Proportional gain Kp1)

It decides the regulating intensity of the PID regulator. The higher the Kp1 is, the larger the regulating intensity is. The value 100.0 indicates when the deviation between PID feedback and PID setting is 100.0%, the adjustment amplitude of the PID regulator on the output frequency reference is the maximum frequency.

- PA-06 (Integral time Ti1)

It decides the integral regulating intensity. The shorter the integral time is, the larger the regulating intensity is. When the deviation between PID feedback and PID setting is 100.0%, the integral regulator performs continuous adjustment for the time set in PA06 . Then the adjustment amplitude reaches the maximum frequency.

- PA-07 (Differential time Td1)

It decides the regulating intensity of the PID regulator on the deviation change. The longer the differential time is, the larger the regulating intensity is. Differential time is the time within which the feedback value change reaches 100.0%, and then the adjustment amplitude reaches the maximum frequency.

Function Code	Parameter Name	Setting Range	Default
PA-08	Cut-off frequency of PID reverse rotation	0.00 to maximum frequency	2.00 Hz

In some situations, only when the PID output frequency is a negative value (AC drive reverse rotation), PID setting and PID feedback can be equal. However, too high reverse rotation frequency is prohibited in some applications, and PA-08 is used to determine the reverse rotation frequency upper limit.

Function Code	Parameter Name	Setting Range	Default
PA-09	PID deviation limit	$0.0 \%-100.0 \%$	0.0%

If the deviation between PID feedback and PID setting is smaller than the value of PA-09, PID control stops. The small deviation between PID feedback and PID setting will make the output frequency stabilize, effective for some closed-loop control applications.

Function Code	Parameter Name	Setting Range	Default
PA-10	PID differential limit	$0.00 \%-100.00 \%$	0.10%

It is used to set the PID differential output range. In PID control, the differential operation may easily cause system oscillation. Thus, the PID differential regulation is restricted to a small range.

Function Code	Parameter Name	Setting Range	Default
PA-11	PID setting change time	$0.00-650.00 \mathrm{~s}$	0.00 s

The PID setting change time indicates the time required for PID setting changing from 0.0% to 100.0%. The PID setting changes linearly according to the change time, reducing the impact caused by sudden setting change on the system.

Function Code	Parameter Name	Setting Range	Default
PA-12	PID feedback filter time	$0.00-60.00 \mathrm{~s}$	0.00 s
PA-13	PID output filter time	$0.00-60.00 \mathrm{~s}$	0.00 s

PA-12 is used to flter the PID feedback, helping to reduce interference on the feedback but slowing the response of the process closed-loop system.

PA-13 is used to flter the PID output frequency, helping to weaken sudden change of the AC drive output frequency but slowing the response of the process closed-loop system.

Function Code	Parameter Name	Setting Range	Default
PA-15	Proportional gain Kp2	$0.0-100.0$	20.0
PA-16	Integral time Ti2	$0.01-10.00 \mathrm{~s}$	2.00 s
PA-17	Differential time Td2	$0.000-10.000$ s	0.000 s
PA-18	PID parameter switchover condition	0: No switchover 1: Switchover via DI 2: Automatic switchover based on deviation	0
PA-19	PID parameter switchover deviation 1	0.0% to PA-20	20.0%
PA-20	PID parameter switchover deviation 2	PA-19 to 100.0\%	80.0%

In some applications, PID parameters switchover is required when one group of PID parameters cannot satisfy the requirement of the whole running process.

These parameters are used for switchover between two groups of PID parameters. Regulator parameters PA-15 to PA-17 are set in the same way as PA-05 to PA-07.

The switchover can be implemented either via a DI terminal or automatically implemented based on the deviation.

If you select switchover via a DI terminal, the DI must be allocated with function 43 "PID parameter switchover". If the DI is OFF, group 1 (PA-05 to PA-07) is selected. If the DI is ON, group 2 (PA-15 to PA-17) is selected.

If you select automatic switchover, when the absolute value of the deviation between PID feedback and PID setting is smaller than the value of PA-19, group 1 is selected. When the absolute value of the deviation between PID feedback and PID setting is higher than the value of PA-20, group 2 is selected. When the deviation is between PA-19 and PA-20, the PID parameters are the linear interpolated value of the two groups of parameter values.

Figure 5-28 PID parameters switchover

Function Code	Parameter Name	Setting Range	Default
PA-21	PID initial value	$0.0 \%-100.0 \%$	0.0%
PA-22	PID initial value holding time	$0.00-650.00 \mathrm{~s}$	0.00 s

When the AC drive starts up, the PID starts closed-loop algorithm only after the PID output is fxed to the PID initial value (PA-21) and lasts the time set in PA-22.
Figure 5-29 PID initial value function

Function Code	Parameter Name	Setting Range	Default
PA-23	Maximum deviation between two PID outputs in forward direction	$0.00 \%-100.00 \%$	1.00%
PA-24	Maximum deviation between two PID outputs in reverse direction	$0.00 \%-100.00 \%$	1.00%

This function is used to limit the deviation between two PID outputs (2 ms per PID output) to suppress the rapid change of PID output and stabilize the running of the AC drive.

PA-23 and PA-24 respectively correspond to the maximum absolute value of the output deviation in forward direction and in reverse direction.

Function Code	Parameter Name	Setting Range	Default
PA-25	PID integral property	Unit's digit (Integral separated)	00
		0 : Invalid 1: Valid	
		Ten's digit (Whether to stop integral operation when the output reaches the limit)	
		0 : Continue integral operation 1: Stop integral operation	

- Integral separated

If it is set to valid, , the PID integral operation stops when the DI allocated with function 22 "PID integral pause" is ON In this case, only proportional and differential operations take effect.

If it is set to invalid, integral separated remains invalid no matter whether the DI allocated with function 22 "PID integral pause" is ON or not.

- Whether to stop integral operation when the output reaches the limit

If "Stop integral operation" is selected, the PID integral operation stops, which may help to reduce the PID overshoot.

Function Code	Parameter Name	Setting Range	Default
PA-26	Detection value of PID feedback loss	0.0% : Not judging feedback loss $0.1 \%-100.0 \%$	0.0%
PA-27	Detection time of PID feedback loss	$0.0-20.0 \mathrm{~s}$	0.0 s

These parameters are used to judge whether PID feedback is lost.
If the PID feedback is smaller than the value of PA-26 and the lasting time exceeds the value of PA-27, the AC drive reports Err31 and acts according to the selected fault protection action.

Function Code	Parameter Name	Setting Range	Default
PA-28	PID operation at stop	0: No PID operation at stop 1: PID operation at stop	0

It is used to select whether to continue PID operation in the state of stop. Generally, the PID operation stops when the AC drive stops.

Group PB: Swing Frequency, Fixed Length and Count

The swing frequency function is applied to the textile and chemical fiber fields and the applications where traversing and winding functions are required.

The swing frequency function indicates that the output frequency of the $A C$ drive swings up and down with the set frequency as the center. The trace of running frequency at the time axis is shown in the following figure

The swing amplitude is set in PB-00 and PB-01. When PB-01 is set to 0 , the swing amplitude is 0 and the swing frequency does not take effect.
Figure 5-30 Swing frequency control

Function Code	Parameter Name	Setting Range	Default
PB-00	Swing frequency setting mode	0: Relative to the central frequency 1: Relative to the maximum frequency	0

This parameter is used to select the base value of the swing amplitude.

- $\quad 0:$ Relative to the central frequency (P0-07 frequency source selection)

It is variable swing amplitude system. The swing amplitude varies with the central frequency (set frequency).

- 1: Relative to the maximum frequency (P0-10 maximum output frequency)

It is fixed swing amplitude system. The swing amplitude is fixed

Function Code	Parameter Name	Setting Range	Default
PB-01	Swing frequency amplitude	$0.0 \%-100.0 \%$	0.0%
PB-02	Jump frequency amplitude	$0.0 \%-50.0 \%$	0.0%

This parameter is used to determine the swing amplitude and jump frequency amplitude. The swing frequency is limited by the frequency upper limit and frequency lower limit.

- If relative to the central frequency ($\mathrm{PB}-00=0$), the actual swing amplitude AW is the calculation result of P0-07 (Frequency source selection) multiplied by PB-01.
- If relative to the maximum frequency ($\mathrm{PB}-00=1$), the actual swing amplitude AW is the calculation result of P0-10 (Maximum frequency) multiplied by PB-01.

Jump frequency $=$ Swing amplitude AW x PB-02 (Jump frequency amplitude).

- If relative to the central frequency $(P B-00=0)$, the jump frequency is a variable value.
- If relative to the maximum frequency (PB-00 = 1), the jump frequency is a fxed value.

The swing frequency is limited by the frequency upper limit and frequency lower limit.

Function Code	Parameter Name	Setting Range	Default
PB-03	Swing frequency cycle	$0.0-3000.0 \mathrm{~s}$	10.0 s
PB-04	Triangular wave rising time coefficient	$0.0 \%-100.0 \%$	50.0%

PB-03 specifes the time of a complete swing frequency cycle.
PB-04 specifies the time percentage of triangular wave rising time to PB-03 (Swing frequency cycle).

- Triangular wave rising time = PB-03 (Swing frequency cycle) x PB-04 (Triangular wave rising time coefficient, unit: s
- Triangular wave falling time $=$ PB-03 (Swing frequency cycle) x ($1-\mathrm{PB}-04$ Triangular wave rising time coefficient, unit: s

Function Code	Parameter Name	Setting Range	Default
PB-05	Set length	$0-65535 \mathrm{~m}$	1000 m
PB-06	Actual length	$0-65535 \mathrm{~m}$	0 m
PB-07	Number of pulses per meter	$0.1-6553.5$	100.0

The preceding parameters are used for fixed length control
The length information is collected by DI terminals. PB-06 (Actual length) is calculated by dividing the number of pulses collected by the DI terminal by PB-07 (Number of pulses each meter).

When the actual length PB-06 exceeds the set length in PB-05, the DO terminal allocated with function 10 (Length reached) becomes ON.

During the fixed length control, the length reset operation can be performed via the DI terminal allocated with function 28. For details, see the descriptions of P4-00 to P4-09.

Allocate corresponding DI terminal with function 27 (Length count input) in applications. If the pulse frequency is high, DI5 must be used.

Function Code	Parameter Name	Setting Range	Default
PB-08	Set count value	$1-65535$	1000
PB-09	Designated count value	$1-65535$	1000

The count value needs to be collected by DI terminal. Allocate the corresponding DI terminal with function 25 (Counter input) in applications. If the pulse frequency is high, DI5 must be used.

When the count value reaches the set count value (PB-08), the DO terminal allocated with function 8 (Set count value reached) becomes ON. Then the counter stops counting.

When the counting value reaches the designated counting value (PB-09), the DO terminal allocated with function 9 (Designated count value reached) becomes ON. Then the counter continues to count until the set count value is reached.

PB-09 should be equal to or smaller than PB-08.

Figure 5-31 Reaching the set count value and designated count value

Group PC: Multi-Reference and Simple PLC Function

The G1100 multi-reference has many functions. Besides multi-speed, it can be used as the setting source of the V/F separated voltage source and setting source of proc Oess PID. In addition, the multi-reference is relative value.

The simple PLC function is different from the G1100 user programmable function. Simple PLC can only complete simple combination of multi-reference, while the user programmable function is more practical. For details, see the descriptions of group A7.

Function Code	Parameter Name	Setting Range	Default
PC-00	Reference 0	$-100.0 \%-100.0 \%$	0.0%
PC-01	Reference 1	$-100.0 \%-100.0 \%$	0.0%
PC-02	Reference 2	$-100.0 \%-100.0 \%$	0.0%
PC-03	Reference 3	$-100.0 \%-100.0 \%$	0.0%
PC-04	Reference 4	$-100.0 \%-100.0 \%$	0.0%
PC-05	Reference 5	$-100.0 \%-100.0 \%$	0.0%
PC-06	Reference 6	$-100.0 \%-100.0 \%$	0.0%
PC-07	Reference 7	$-100.0 \%-100.0 \%$	0.0%
PC-08	Reference 8	$-100.0 \%-100.0 \%$	0.0%
PC-09	Reference 9	$-100.0 \%-100.0 \%$	0.0%
PC-10	Reference 10	$-100.0 \%-100.0 \%$	0.0%
PC-11	Reference 11	$-100.0 \%-100.0 \%$	0.0%
PC-12	Reference 12	$-100.0 \%-100.0 \%$	0.0%
PC-13	Reference 13	$-100.0 \%-100.0 \%$	0.0%
PC-14	Reference 14	$-100.0 \%-100.0 \%$	0.0%
PC-15	Reference 15	$-100.0 \%-100.0 \%$	0.0%

Multi-reference can be the setting source of frequency, V/F separated voltage and process PID. The multi-reference is relative value and ranges from -100.0% to 100.0%.

As frequency source, it is a percentage relative to the maximum frequency. As V/F separated voltage source, it is a percentage relative to the rated motor voltage. As process PID setting source, it does not require conversion.

Multi-reference can be switched over based on different states of DI terminals. For details, see the descriptions of group P4.

Function Code	Parameter Name	Setting Range	Default
	Simple PLC	0: Stop after the AC drive runs one cycle 1: Keep final values after the AC drive runs rune cycle 2: Repeat after the AC drive runs one cycle	0

- 0: Stop after the AC drive runs one cycle

The AC drive stops after running one cycle, and will not start up until receiving another command.

- 1: Keep final values after the AC drive runs one cycle

The AC drive keeps the final running frequency and direction after running one cycle

- 2: Repeat after the AC drive runs one cycle

The AC drive automatically starts another cycle after running one cycle, and will not stop until receiving the stop command.

Simple PLC can be either the frequency source or V/F separated voltage source.
When simple PLC is used as the frequency source, whether parameter values of PC-00 to $\mathrm{PC}-15$ are positive or negative determines the running direction. If the parameter values are negative, it indicates that the AC drive runs in reverse direction.

Figure 5-32 Simple PLC when used as frequency source

Function Code	Parameter Name	Setting Range	Default
PC-17	Simple PLC retentive selection	Unit's digit (Retentive upon power failure)	00
		0: No	
		1: Yes	
		Ten's digit (Retentive upon stop)	
		$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$	

PLC retentive upon power failure indicates that the AC drive memorizes the PLC running moment and running frequency before power failure and will continue to run from the memorized moment after it is powered on again. If the unit's digit is set to 0 , the $A C$ drive restarts the PLC process after it is powered on again.

PLC retentive upon stop indicates that the AC drive records the PLC running moment and running frequency upon stop and will continue to run from the recorded moment after it starts up again. If the ten's digit is set to 0 , the AC drive restarts the PLC process after it starts up again.

Function Code	Parameter Name	Setting Range	Default
PC-18	Running time of simple PLC reference 0	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-19	Acceleration/deceleration time of simple PLC reference 0	$0-3$	0
PC-20	Running time of simple PLC reference 1	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-21	Acceleration/deceleration time of simple PLC reference 1	$0-3$	0
PC-22	Running time of simple PLC reference 2	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-23	Acceleration/deceleration time of simple PLC reference 2	$0-3$	0
PC-24	Running time of simple PLC reference 3	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-25	Acceleration/deceleration time of simple PLC reference 3	$0-3$	0
PC-26	Running time of simple PLC reference 4	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-27	Acceleration/deceleration time of simple PLC reference 4	$0-3$	0
PC-28	Running time of simple PLC reference 5	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-29	Acceleration/deceleration time of simple PLC reference 5	$0-3$	0
PC-30	Running time of simple PLC reference 6	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-31	Acceleration/deceleration time of simple PLC reference 6	$0-3$	0
PC-32	Running time of simple PLC reference 7	$0.0-6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$
PC-33	Acceleration/deceleration time of simple PLC reference 7	$0-3$	0

Function Code	Parameter Name	Setting Range	Default
PC-34	Running time of simple PLC reference 8	0.0-6553.5s (h)	0.0s (h)
PC-35	Acceleration/deceleration time of simple PLC reference 8	0-3	0
PC-36	Running time of simple PLC reference 9	0.0-6553.5s (h)	0.0s (h)
PC-37	Acceleration/deceleration time of simple PLC reference 9	0-3	0
PC-38	Running time of simple PLC reference 10	0.0-6553.5s (h)	0.0s (h)
PC-39	Acceleration/deceleration time of simple PLC reference 10	0-3	0
PC-40	Running time of simple PLC reference 11	0.0-6553.5s (h)	0.0s (h)
PC-41	Acceleration/deceleration time of simple PLC reference 11	0-3	0
PC-42	Running time of simple PLC reference 12	0.0-6553.5s (h)	0.0s (h)
PC-43	Acceleration/deceleration time of simple PLC reference 12	0-3	0
PC-44	Running time of simple PLC reference 13	0.0-6553.5s (h)	0.0s (h)
PC-45	Acceleration/deceleration time of simple PLC reference 13	0-3	0
PC-46	Running time of simple PLC reference 14	0.0-6553.5s (h)	0.0s (h)
PC-47	Acceleration/deceleration time of simple PLC reference 14	0-3	0
PC-48	Running time of simple PLC reference 15	0.0-6553.5s (h)	0.0s (h)
PC-49	Acceleration/deceleration time of simple PLC reference 15	0-3	0
PC-50	Time unit of simple PLC running	$\begin{aligned} & \text { 0: s (second) } \\ & \text { 1: } \mathrm{h} \text { (hour) } \end{aligned}$	0

Function Code	Parameter Name	Setting Range	Default
		0: Set by PC-00 1: Al1 2: Al2	
		PC-51 	Reference 0 source
		Al3 4: Pulse setting 5: PID 6: Set by preset frequency (P0-08), modified via terminal UP/DOWN	

It determines the setting channel of reference 0 . You can perform convenient switchover between the setting channels. When multi-reference or simple PLC is used as frequency source, the switchover between two frequency sources can be realized easily.

Group PP: User Password

Function Code	Parameter Name	Setting Range	Default
PP-00	User password	$0-65535$	0

If it is set to any non-zero number, the password protection function is enabled. After a password has been set and taken effect, you must enter the correct password in order to enter the menu. If the entered password is incorrect you cannot view or modify parameters.

If PP-00 is set to 00000 , the previously set user password is cleared, and the password protection function is disabled.

Function Code	Parameter Name	Setting Range	Default
		0: No operation PP-01	Restore default settings
		parameters sactory settings except motor 2: Clear records	
		4: Restore user backup parameters	
	501: Back up current user parameters	0	

- 1: Restore default settings except motor parameters

If PP-01 is set to 1 , most function codes are restored to the default settings except motor parameters, frequency reference resolution (P0-22), fault records, accumulative running time (P7-09), accumulative power-on time (P7-13) and accumulative power consumption (P7-14).

- 2: Clear records

If PP-01 is set to 2 , the fault records, accumulative running time (P7-09), accumulative power-on time (P7-13) and accumulative power consumption (P7-14) are cleared.

- 501: Back up current user parameters

If PP-01 is set to 501, the current parameter settings are backed up, helping you to restore the setting if incorrect parameter setting is performed.

- 4: Restore user backup parameters

Function Code	Parameter Name	Setting Range	Default
PP-02	AC drive parameter display property	Unit's digit (Group U display selection)	11
		0: Not display	
		1: Display	
		Ten's digit (Group A display selection)	
		0 : Not display 1: Display	
PP-03	Individualized parameter display property	Unit's digit (User-defined parameter display selection)	00
		0: Not display	
		1: Display	
		Ten's digit (User-modified parameter display selection)	
		0: Not display 1: Display	

The setting of parameter display mode aims to facilitate you to view different types of parameters based on actual requirements. The G1100 provides the following three parameter display modes.

Table 5-9 Three parameter display modes provided by UNIQUE-G1100

Name	Description
AC drive parameter display	Display function codes of the AC drive in sequence of P0 to PF, A0 to AF and U0 to UF.
User-defined parameter display	Display a maximum of 32 user-defined parameters included in group PE.
User-modified parameter display	Display the parameters that are modified.

If one digit of PP-03 is set to 1 , you can switch over to different parameter display modes by pressing key eurck. By default, the AC drive parameter display mode is used.

The display codes of different parameter types are shown in the following table.
Table 5-10 Display codes of different parameter types

Parameter Type	Display Code
AC drive parameter	- ロ¢5E
User-defined parameter	- \5Er
User-modified parameter	--[--

The G1100 provides display of two types of individualized parameters: userdefined parameters and user-modified parameters

- You-defined parameters are included in group PE. You can add a maximum of 32 parameters, convenient for commissioning.

In user-defined parameter mode, symbol "u" is added before the function code. For example, P1-00 is displayed as uP1-00.

- You-modified parameters are grouped together, convenient for on-site troubleshooting. In you-modified parameter mode, symbol "c" is added before the function code. For example, P1-00 is displayed as cP1-00.

Function Code	Name	Setting Range	Default
PP-04	Parameter modification property	0: Modifiable 1: Not modifiable	0

It is used to set whether the parameters are modifiable to avoid mal-function. If it is set to 0 , all parameters are modifiable. If it is set to 1 , all parameters can only be viewed

Group AO: Torque Control and Restricting Parameters

Function Code	Parameter Name	Setting Range	Default
A0-00	Speed/Torque control selection	$0:$ Speed control $1:$ Torque control	0

It is used to select the AC drive's control mode: speed control or torque control.
The G1100 provides DI terminals with two torque related functions, function 29 (Torque control prohibited) and function 46 (Speed control/Torque control switchover). The two DI terminals need to be used together with A0-00 to implement speed control/torque control switchover.

If the DI terminal allocated with function 46 (Speed control/Torque control switchover) is OFF, the control mode is determined by A0-00. If the DI terminal allocated with function 46 is ON , the control mode is reverse to the value of A0-00.

However, if the DI terminal with function 29 (Torque control prohibited) is ON, the AC drive is fixed to run in the speed control mode

Function Code	Parameter Name	Setting Range	Default
A0-01	Torque setting source in torque control	0 : Digital setting (A0-03) 1: Al1 2: Al2 3: Al3 4: Pulse setting (DI5) 5: Communication setting 6: MIN (Al1, AI2) 7: MAX (Al1, AI2)	0
A0-03	Torque digital setting in torque control	-200.0\%-+200.0\%	150.0\%

A0-01 is used to set the torque setting source. There are a total of eight torque setting sources.

The torque setting is a relative value. 100.0\% corresponds to the AC drive's rated torque. The setting range is -200.0% to 200.0%, indicating the AC drive's maximum torque is twice of the AC drive's rated torque.

If the torque setting is positive, the AC drive rotates in forward direction. If the torque setting is negative, the AC drive rotates in reverse direction.

- 1: Digital setting (A0-03)

The target torque directly uses the value set in A0-03.

- 2: Al1
- 3: Al2
- 4: Al3

The target torque is decided by analog input. The G1100 control board provides two AI terminals (AI1, Al2). Another AI terminal (Al3) is provided by the I/O extension card. Al1 is $0-10 \mathrm{~V}$ voltage input, Al 2 is $0-10 \mathrm{~V}$ voltage input or $\mathrm{O} 4-20 \mathrm{~mA}$ current input decided by jumper J 8 on the control board, and Al 3 is -10 V to +10 V voltage input.

The G1100 provides fve curves indicating the mapping relationship between the input voltage of AI1, Al2 and AI3 and the target frequency, three of which are linear (pointpoint) correspondence and two of which are four-point correspondence curves. You can set the curves by using function codes P4-13 to P4-27 and function codes in group A6, and select curves for AI1, Al2 and AI3 in P4-33.

When Al is used as frequency setting source, the corresponding value 100% of voltage/ current input corresponds to the value of A0-03.

- 5: Pulse setting (DI5)

The target torque is set by DI5 (high-speed pulse). The pulse setting signal specification is $9-30 \mathrm{~V}$ (voltage range) and $0-100 \mathrm{kHz}$ (frequency range). The pulse can only be input via DI5. The relationship (which is a two-point line) between DI5 input pulse frequency and the corresponding value is set in $\mathrm{P} 4-28$ to $\mathrm{P} 4-31$. The corresponding value 100.0% of pulse input corresponds to the value of A0-03.

- 5: Communication setting

The target torque is set by means of communication.
If the $A C$ drive is a slave in point-point communication and receives data as torque source, data transmitted by the master is used as the setting value. For details, see the description of group A8.

If PROFIBUS-DP communication is valid and PZD1 is used for torque setting, data transmitted by PDZ1 is directly used as the torque source. The data format is -100.00% to 100.00%. 100% corresponds to the value of A0-03.

In other conditions, data is given by host computer through the communication address 0×1000. The data format is -100.00% to 100.00%. 100% corresponds to the value of A0-03.

The G1100 supports four host computer communication protocols: Modbus,

PROFIBUS-DP, CANopen and CANlink. They cannot be used simultaneously.
If the communication mode is used, a communication card must be installed. The G1100 provides four optional communication cards and you can select one based on actual requirements. If the communication protocol is Modbus, PROFIBUS-DP or CANopen, the corresponding serial communication protocol needs to be selected based on the setting of P0-28.

The CANlink protocol is always valid.

Function Code	Parameter Name	Setting Range	Default
A0-05	Forward maximum frequency in torque control	0.00 Hz to maximum frequency (F0-10)	50.00 Hz
A0-06	Reverse maximum frequency in torque control	0.00 Hz to maximum frequency (F0-10)	50.00 Hz

two parameters are used to set the maximum frequency in forward or reverse rotation in torque control mode.

In torque control, if the load torque is smaller than the motor output torque, the motor's rotational speed will rise continuously. To avoid runaway of the mechanical system, the motor maximum rotating speed must be limited in torque control.

You can implement continuous change of the maximum frequency in torque control dynamically by controlling the frequency upper limit.

Function Code	Parameter Name	Setting Range	Default
A0-07	Acceleration time in torque control	$0.00-65000 \mathrm{~s}$	0.00 s
A0-08	Deceleration time in torque control	$0.00-65000 \mathrm{~s}$	0.00 s

In torque control, the difference between the motor output torque and the load torque determines the speed change rate of the motor and load. The motor rotational speed may change quickly and this will result in noise or too large mechanical stress. The setting of acceleration/deceleration time in torque control makes the motor rotational speed change softly.

However, in applications requiring rapid torque response, set the acceleration/deceleration time in torque control to 0.00 s. For example, two AC drives are connected to drive the same load. To balance the load allocation, set one AC drive as master in speed control and the other as slave in torque control. The slave receives the master's output torque as the torque command and must follow the master rapidly. In this case, the acceleration/deceleration time of the slave in torque control is set to 0.0 s.

Group A1: Virtual DI (VDI)/Virtual DO (VDO)

Function Code	Parameter Name	Setting Range	Default
A1-00	VDI1 function selection	$0-59$	0
A1-01	VDI2 function selection	$0-59$	0
A1-02	VDI3 function selection	$0-59$	0

Function Code	Parameter Name	Setting Range	Default
A1-03	VDI4 function selection	$0-59$	0
A1-04	VDI5 function selection	$0-59$	0

VDI1 to VDI5 have the same functions as DI terminals on the control board and can be used for digital input. For more details, see description of P4-00 to P4-09.

Function Code	Parameter Name	Setting Range	Default
A1-05	VDI state setting mode	Unit's digit (VDI1)	00000
		0 : Decided by state of VDOx 1: Decided by A1-06	
		Ten's digit (VDI2)	
		0,1 (same as VDI1)	
		Hundred's digit (VDI3)	
		0, 1 (same as VDI1)	
		Thousand's digit (VDI4)	
		0,1 (same as VDI1)	
		Ten thousand's digit (VDI5)	
		0,1 (same as VDI1)	
A1-06	VDI state selection	Unit's digit (VDI1)	00000
		0 : Invalid 1: Valid	
		Ten's digit (VDI2)	
		0,1 (same as VDI1)	
		Hundred's digit (VDI3)	
		0,1 (same as VDI1)	
		Thousand's digit (VDI4)	
		0, 1 (same as VDI1)	
		Ten thousand's digit (VDI5)	
		0,1 (same as VDI1)	

Different from DI terminals, VDI state can be set in two modes, selected in A1-05:

- Decided by state of VDOx

Whether the state a VDI is valid is determined by the state of the corresponding VDO and VDIx is uniquely bound to VDOx (x is between 1 and 5). For example, to implement the function that the AC drive reports an alarm and stops when the Al1 input exceeds the limit, perform the following setting:

1) Allocate VDI1 with function 44 "User-defined fault 1" (A1-00 = 44).
2) Set A1-05 to $x x x 0$.
3) Allocate VDO1 with function 31 "Al1 input limit exceeded" (A1-11 $=31$).

When the AI1 input exceeds the limit, VDO1 becomes ON. At this moment, VDI1 becomes ON and the AC drive receives you-defined fault 1. Then the AC drive reports Err27 and stops.

- Decided by A1-06

The VDI state is determined by the binary bit of A1-06. For example, to implement the function that the AC drive automatically enters the running state after power-on, perform the following setting:

1) Allocate VDI1 with function 1 "Forward RUN (FWD)" (A1-00 = 1).
2) Set A1-05 to $x x x 1$: The state of VDI1 is decided by A1-06.
3) Set A1-06 to $x x x 1$: VDI1 is valid.
4) Set P0-02 to 1: The command source to terminal control.
5) Set P8-18 to 0: Startup protection is not enabled.

When the AC drive completes initialization after power-on, it detects that VDI1 is valid and VDI1 is allocated with the function of forward RUN. That is, the AC drive receives the forward RUN command from the terminal. Therefore, The AC drive starts to run in forward direction.

Function Code	Parameter Name	Setting Range	Default
A1-07	Function selection for Al1 used as DI	0-59	0
A1-08	Function selection for Al2 used as DI	0-59	0
A1-09	Function selection for Al3 used as DI	0-59	0
A1-10	State selection for Al used as DI	Unit's digit (Al1) 0 : High level valid 1: Low level valid Ten's digit (Al2) 0,1 (same as unit's digit) Hundred's digit (Al3) 0,1 (same as unit's digit)	000

The functions of these parameters are to use Al as DI . When Al is used as DI , the Al state is high level if the Al input voltage is 7 V or higher and is low level if the Al input voltage is 3 V or lower. The AI state is hysteresis if the AI input voltage is between 3 V and 7 V . A1-10 is used to determine whether high level valid or low level valid when Al is used as DI.

The setting of Als (used as DI) function is the same as that of DIs. For details, see the descriptions of group P4.

The following figure takes Al input voltage as an example to describe the relationship between AI input voltage and corresponding DI state.

Figure 5-33 Relationship of AI input voltage and corresponding DI status

Function Code	Parameter Name	Setting Range	Default
A1-11	VDO1 function selection	0: Short with physical Dlx internally $1-40:$ Refer to function selection of physical DO in group P5.	0
A1-12	VDO2 function selection	0: Short with physical DIx internally 1-40: Refer to function selection of physical DO in group P5.	0
A1-13	VDO3 function selection	0: Short with physical Dix internally $1-40:$ Refer to function selection of physical DO in group P5.	0
A1-14	VDO4 function selection	0: Short with physical Dix internally $1-40:$ Refer to function selection of physical DO in group P5.	0
A1-15	VDO5 function selection	0: Short with physical Dix internally $1-40:$ Refer to function selection of physical DO in group P5.	0
A1-16	VDO1 output delay	$0.0-3600.0 \mathrm{~s}$	0.0 s
A1-17	VDO2 output delay	$0.0-3600.0 \mathrm{~s}$	0.0 s
A1-18	VDO3 output delay	$0.0-3600.0 \mathrm{~s}$	0.0 s
A1-19	VDO4 output delay	$0.0-3600.0 \mathrm{~s}$	0.0 s
A1-20	VDO5 output delay	$0.0-3600.0 \mathrm{~s}$	0.0 s

Function Code	Parameter Name	Setting Range	Default
A1-21	VDO state selection	Unit's digit (VDO1)	00000
		0 : Positive logic	
		1: Reverse logic	
		Ten's digit (VDO2)	
		0,1 (same as unit's digit)	
		Hundred's digit (VDO3)	
		0, 1 (same as unit's digit)	
		Thousand's digit (VDO4)	
		0,1 (same as unit's digit)	
		Ten thousand's digit (VDO5)	
		0,1 (same as unit's digit)	

VDO functions are similar to the DO functions on the control board. The VDO can be used together with VDIx to implement some simple logic control.

- If VDO function is set to 0 , the state of VDO1 to VDO5 is determined by the state of DI1 to DI5 on the control board. In this case, VDOx and DIx are one-to-one mapping relationship.
- If VDO function is set to non- 0 , the function setting and use of VDOx are the same as DO in group P5.

The VDOx state can be set in A1-21. The application examples of VDIx involve the use of VDOx, and see the examples for your reference.

Group A2 to A4: Motor 2 to Motor 4 Parameters

The G1100 can switch over the running among four motors. For the four motors, you can:

- Set motor nameplate parameters respectively
- Perform motor parameter auto-tuning respectively
- Select V/F control or vector control respectively
- Set encoder-related parameters respectively
- Set parameters related to V/F control or vector control independently

Groups A2, A3 and A4 respectively correspond to motor 2 , motor 3 and motor 4. The parameters of the three groups are the same. Here we just list the parameters of group A2 for reference.

All parameters in group A2 have the same definition and usage as parameters of motor 1. For more details, refer to the descriptions of motor 1 parameters.

Function Code	Parameter Name	Setting Range	Default
A2-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor 2: Permanent magnetic synchronous motor	0

Function Code	Parameter Name	Setting Range	Default
A2-01	Rated motor power	0.1-1000.0 kW	Model dependent
A2-02	Rated motor voltage	1-2000 V	Model dependent
A2-03	Rated motor current	$0.01-655.35 \mathrm{~A}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.1-6553.5 \mathrm{~A}$ (AC drive power > 55 kW)	Model dependent
A2-04	Rated motor frequency	0.01 Hz to maximum frequency	Model dependent
A2-05	Rated motor rotational speed	1-65535 RPM	Model dependent
A2-06	Stator resistance (asynchronous motor)	$0.001-65.535 \Omega$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.0001-6.5535 \Omega$ (AC drive power > 55 kW)	Model dependent
A2-07	Rotor resistance (asynchronous motor)	$0.001-65.535 \Omega$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.0001-6.5535 \Omega$ (AC drive power > 55 kW)	Model dependent
A2-08	Leakage inductive reactance (asynchronous motor)	$0.01-655.35 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.001-65.535 \mathrm{mH}$ (AC drive power > 55 kW)	Model dependent
A2-09	Mutual inductive reactance (asynchronous motor)	$0.1-6553.5 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.01-655.35 \mathrm{mH}$ (AC drive power > 55 kW)	Model dependent
A2-10	No-load current (asynchronous motor)	0.01 A to A2-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 A to A2-03 (AC drive power > 55 kW)	Model dependent
A2-16	Stator resistance (synchronous motor)	$0.001-65.535 \Omega$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.0001-6.5535 \Omega$ (AC drive power > 55 kW)	Model dependent
A2-17	Shaft D inductance (synchronous motor)	$0.01-655.35 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.001-65.535 \mathrm{mH}$ (AC drive power > 55 kW)	Model dependent
A2-18	Shaft Q inductance (synchronous motor)	$0.01-655.35 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.001-65.535 \mathrm{mH}$ (AC drive power > 55 kW)	Model dependent
A2-20	Back EMF (synchronous motor)	0.1-6553.5 V	Model dependent
A2-27	Encoder pulses per revolution	1-65535	1024
A2-28	Encoder type	0: ABZ incremental encoder 1: UVW incremental encoder 2: Resolver 3: SIN/COS encoder 4: Wire-saving UVW encoder	0
A2-30	A, B phase sequence of $A B Z$ incremental encoder	0: Forward 1: Reserve	0

Function Code	Parameter Name	Setting Range	Default
A2-31	Encoder installation angle	$0.0^{\circ}-359.9^{\circ}$	0.0°
A2-32	U, V, W phase sequence of UVW encoder	0: Forward 1: Reverse	0
A2-33	UVW encoder angle offset	$0.0^{\circ}-359.9^{\circ}$	0.0°
A2-34	Number of pole pairs of resolver	1-65535	1
A2-36	Encoder wire-break fault detection time	0.0s: No action 0.1-10.0s	0.0s
A2-37	Auto-tuning selection	0 : No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete autotuning 11: Synchronous motor with-load autotuning 12: Synchronous motor no-load auto-tuning	0
A2-38	Speed loop proportional gain 1	0-100	30
A2-39	Speed loop integral time 1	0.01-10.00s	0.50s
A2-40	Switchover frequency 1	0.00 to A2-43	5.00 Hz
A2-41	Speed loop proportional gain 2	0-100	15
A2-42	Speed loop integral time 2	0.01-10.00s	1.00s
A2-43	Switchover frequency 2	A2-40 to maximum output frequency	10.00 Hz
A2-44	Vector control slip gain	50\%-200\%	100\%
A2-45	Time constant of speed loop filter	0.000-0.100s	0.000s
A2-46	Vector control overexcitation gain	0-200	64
A2-47	Torque upper limit source in speed control mode	$\begin{aligned} & \text { 0: A2-48 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { 4: Pulse setting (DI5) } \\ & \text { 5: Via communication } \\ & \text { 6: MIN(Al1,AI2) } \\ & \text { 7: } \operatorname{MIN}(\mathrm{Al} 1, \mathrm{Al} 2) \\ & \hline \end{aligned}$	0

Function Code	Parameter Name	Setting Range	Default
A2-48	Digital setting of torque upper limit in speed control mode	0.0\%-200.0\%	150.0\%
A2-51	Excitation adjustment proportional gain	0-20000	2000
A2-52	Excitation adjustment integral gain	0-20000	1300
A2-53	Torque adjustment proportional gain	0-20000	2000
A2-54	Torque adjustment integral gain	0-20000	1300
A2-55	Speed loop integral property	Unit's digit: Integral separated 0: Disabled 1: Enabled	0
A2-56	Field weakening mode of synchronous motor	0: No field weakening 1: Direct calculation 2: Adjustment	0
A2-57	Field weakening degree of synchronous motor	50\%-500\%	100\%
A2-58	Maximum field weakening current	1\%-300\%	50\%
A2-59	Field weakening automatic adjustment gain	10\%-500\%	100\%
A2-60	Field weakening integral multiple	2-10	2
A2-61	Motor 2 control mode	0 : Sensorless flux vector control (SFVC) 1: Closed-loop vector control (CLVC) 2: Voltage/Frequency (V/F) control	0
A2-62	Motor 2 acceleration/ deceleration time	0 : Same as motor 1 1: Acceleration/Deceleration time 1 2: Acceleration/Deceleration time 2 3: Acceleration/Deceleration time 3 4: Acceleration/Deceleration time 4	0
A2-63	Motor 2 torque boost	0.0% : Automatic torque boost $0.1 \%-30.0 \%$	Model dependent
A2-65	Motor 2 oscillation suppression gain	0-100	Model dependent

Group A5: Control Optimization Parameters

Function Code	Parameter Name	Setting Range	Default
A5-00	DPWM switchover frequency upper limit	$0.00-15.00 \mathrm{~Hz}$	12.00 Hz

This parameter is valid only for V/F control.
It is used to determine the wave modulation mode in V/F control of asynchronous motor. If the frequency is lower than the value of this parameter, the waveform is 7 -segment continuous modulation. If the frequency is higher than the value of this parameter, the waveform is 5 -segment intermittent modulation.

The 7-segment continuous modulation causes more loss to switches of the AC drive but smaller current ripple. The 5 -segment intermittent modulation causes less loss to switches of the AC drive but larger current ripple. This may lead to motor running instability at high frequency. Do not modify this parameter generally.

For instability of V/F control, refer to parameter P3-11. For loss to AC drive and temperature rise, refer to parameter P0-15.

Function Code	Parameter Name	Setting Range	Default
A5-01	PWM modulation mode	0: Asynchronous modulation $1:$ Synchronous modulation	0

This parameter is valid only for V/F control.
Synchronous modulation indicates that the carrier frequency varies linearly with the change of the output frequency, ensuring that the ratio of carrier frequency to output frequency remains unchanged. Synchronous modulation is generally used at high output frequency, which helps improve the output voltage quality.

At low output frequency (100 Hz or lower), synchronous modulation is not required. This is because asynchronous modulation is preferred when the ratio of carrier frequency to output frequency is high.

Synchronous modulation takes effect only when the running frequency is higher than 85 Hz . If the frequency is lower than 85 Hz , asynchronous modulation is always used.

Function Code	Parameter Name	Setting Range	Default
A5-02	Dead zone compensation mode selection	0: No compensation 1: Compensation mode 1 2: Compensation mode 2	1

Generally, you need not modify this parameter. Try to use a different compensation mode only when there is special requirement on the output voltage waveform quality or oscillation occurs on the motor.

For high power AC drive, compensation mode 2 is recommended.

Function Code	Parameter Name	Setting Range	Default
A5-03	Random PWM depth	$0:$ Random PWM invalid $1-10$	0

The setting of random PWM depth can make the shrill motor noise softer and reduce the electromagnetic interference. If this parameter is set to 0 , random PWM is invalid.

Function Code	Parameter Name	Setting Range	Default
A5-04	Rapid current limit	0: Disabled $1:$ Enabled	1

The rapid current limit function can reduce the AC drive's overcurrent faults at maximum, guaranteeing uninterrupted running of the AC drive.

However, long-time rapid current limit may cause the AC drive to overheat, which is not allowed. In this case, the AC drive will report Err40, indicating the AC drive is overloaded and needs to stop.

Function Code	Parameter Name	Setting Range	Default
A5-05	Current detection compensation	$0-100$	5

It is used to set the AC drive current detection compensation. Too large value may lead to deterioration of control performance. Do not modify it generally.

Function Code	Parameter Name	Setting Range	Default
A5-06	Undervoltage threshold	$60.0 \%-140.0 \%$	100.0%

It is used to set the undervoltage threshold of Err09. The undervoltage threshold 100% of the AC drive of different voltage classes corresponds to different nominal values, as listed in the following table.

Table 5-11 Undervoltage nominal values for different voltage

Voltage Class	Nominal Value of Undervoltage threshold
Three-phase 380 V	350 V

Function Code	Parameter Name	Setting Range	Default
A5-07	SFVC optimization mode selection	1: Optimization mode 1 2: Optimization mode 2	1

- 1: Optimization mode 1

It is used when the requirement on torque control linearity is high.

- 2: Optimization mode 2

It is used for the requirement on speed stability is high.

Function Code	Parameter Name	Setting Range	Default
A5-09	Overvoltage threshold	$200.0-2500.0 \mathrm{~V}$	2000.0 V

It is used to set the overvoltage threshold of the AC drive. The default values of different voltage classes are listed in the following table.
Table 5-12 Overvoltage thresholds for different voltage classes

Voltage Class	Default Overvoltage Threshold
Three-phase 380 V	810.0 V

Note

The default value is also the upper limit of the AC drive's internal overvoltage protection voltage. The parameter becomes effective only when the setting of A5-09 is lower than the default value. If the setting is higher than the default value, use the default value.

Group A6: AI Curve Setting

Function Code	Name	Setting Range	Default
A6-00	Al curve 4 minimum input	-10.00 V to A6-02	0.00 V
A6-01	Corresponding setting of AI curve 4 minimum input	$-100.0 \%-100.0 \%$	0.0%
A6-02	Al curve 4 inflexion 1 input	A6-00 to A6-04	3.00 V
A6-03	Corresponding setting of AI curve 4 inflexion 1 input	$-100.0 \%-100.0 \%$	30.0%
A6-04	Al curve 4 inflexion 1 input	A6-02 to A6-06	6.00 V
A6-05	Corresponding setting of AI curve 4 inflexion 1 input	$-100.0 \%-100.0 \%$	60.0%
A6-06	Al curve 4 maximum input	A6-06 to 10.00 V	10.00 V
A6-07	Corresponding setting of AI curve 4 maximum input	$-100.0 \%-100.0 \%$	100.0%
A6-08	Al curve 5 minimum input	-10.00 V to A6-10	0.00 V

Function Code	Name	Setting Range	Default
A6-09	Corresponding setting of AI curve 5 minimum input	$-100.0 \%-100.0 \%$	0.0%
A6-10	Al curve 5 inflexion 1 input	A6-08 to A6-12	3.00 V
A6-11	Corresponding setting of AI curve 5 inflexion 1 input	$-100.0 \%-100.0 \%$	30.0%
A6-12	Al curve 5 inflexion 1 input	A6-10 to A6-14	6.00 V
A6-13	Corresponding setting of AI curve 5 inflexion 1 input	$-100.0 \%-100.0 \%$	60.0%
A6-14	Al curve 5 maximum input	A6-14 to 10.00 V	10.00 V
A6-15	Corresponding setting of AI curve 5 maximum input	$-100.0 \%-100.0 \%$	100.0%

The function of curve 4 and curve 5 is similar to that curve 1 to curve 3 , but curve 1 to curve 3 are lines, and curve 4 and curve 5 are 4 -point curves, implementing more flexible corresponding relationship. The schematic diagram of curve 4 and curve 5 is shown in the following figure

Figure 5-34 Schematic diagram curve 4 and curve 5

When setting curve 4 and curve 5, note that the curve's minimum input voltage, inflexion 1 voltage, inflexion 2 voltage and maximum voltage must be in increment orde .

P4-34 (Al curve selection) is used to select curve for Al1 to Al3.

Function Code	Parameter Name	Setting Range	Default
A6-16	Jump point of AI1 input corresponding setting	$-100.0 \%-100.0 \%$	0.0%
A6-17	Jump amplitude of AI1 input corresponding setting	$0.0 \%-100.0 \%$	0.5%
A6-18	Jump point of AI2 input corresponding setting	$-100.0 \%-100.0 \%$	0.0%
A6-19	Jump amplitude of AI2 input corresponding setting	$0.0 \%-100.0 \%$	0.5%

Function Code	Parameter Name	Setting Range	Default
A6-20	Jump point of AI3 input corresponding setting	$-100.0 \%-100.0 \%$	0.0%
A6-21	Jump amplitude of AI3 input corresponding setting	$0.0 \%-100.0 \%$	0.5%

The Al terminals (Al1 to AI3) of the G1100 all support the corresponding setting jump function, which fixes the AI input corresponding setting at the jump point when AI input corresponding setting jumps around the jump range.

For example, Al1 input voltage jumps around 5.00 V and the jump range is $4.90-5.10 \mathrm{~V}$. Al1 minimum input 0.00 V corresponds to 0.0% and maximum input 10.00 V corresponds to 100.0%. The detected Al1 input corresponding setting varies between 49.0% and 51.0%.

If you set A6-16 to 50.0\% and A6-17 to 1.0\%, then the obtained Al1 input corresponding setting is fixed to 50.0%, eliminating the fluctuation fect.

Chapter 6 Selection and Dimensions

6.1 Electrical Specifications of the UNIQUE-G1100

Table 6-1 Models and technical data of the G1100

AC Drive Model	Power Capacity (kVA)	Input Current (A)	Output Current (A)	Adaptabl Motor (kW)
Three-phase $380 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$				
G1100T0015	3	5	3.8	1.5
G1100T0022	4	5.8	5.1	2.2
G1100T0040	5.9	10.5	9	4
G1100T0055	8.9	14.6	13	5.5
G1100T0075	11	20.5	17	7.5
G1100T0110	17	26	25	11
G1100T0150	21	35	32	15
G1100T0180	24	38.5	37	18.5
G1100T0220	30	46.5	45	22
G1100T0300	40	62	60	30
G1100T0370	57	76	75	37
G1100T0450	69	92	91	45
G1100T0550	85	113	112	55
G1100T0750	114	157	150	75
G1100T0900	134	180	176	90

6.2 Physical Appearance and Overall Dimensions of the G1100

Physical appearance and overall dimensions of the G1100

Table 6-2 Overall dimensions and mounting hole dimensions of the G1100

Model	Mounting Hole (mm)		Overall Dimensions (mm)			Mounting Hole Diameter (mm)
	A	B	H	W	D	
Three-phase $380 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$						
G1100T0007						
G1100T0015	113	173	190	128	170	ø4
G1100T0022						
G1100T0040	149	235	248	161	184	$\varnothing 5$
G1100T0055						
G1100T0075						
G1100T0110	190	305	320	205	198	ø6
G1100T0150						
G1100T0180	170	414	438	243	190	$\varnothing 9$
G1100T0220						
G1100T0300						
G1100T0370	200	455	430	275	250	ø10
G1100T0450						
G1100T0550	240	530	546	336	278	$\varnothing 9$
G1100T0750						
G1100T0900	280	648	680	430	310	$ø 11$

Chapter 7 Troubleshooting

7.1 Faults and Solutions

The G1100 provides a total of 24 pieces of fault information and protective functions. After a fault occurs, the AC drive implements the protection function, and displays the fault code on the operation panel (if the operation panel is available).
Before contacting Inovance for technical support, you can first determine the fault type, analyze the causes, and perform troubleshooting according to the following tables. If the fault cannot be rectified, contact the agent or Inovance
Err22 is the AC drive hardware overcurrent or overvoltage signal. In most situations, hardware overvoltage fault causes Err22.

Figure 7-1 Solutions to the faults of the G1100

Fault Name	Display	Possible Causes	Solutions
Inverter unit protection	Err01	1: The output circuit is grounded or short circuited. 2: The connecting cable of the motor is too long. 3: The module overheats. 4: The internal connections become loose. 5:The main control board is faulty. 6: The drive board is faulty. 7: The inverter module is faulty.	1: Eliminate external faults. 2: Install a reactor or an output filter. 3: Check the air filter and the cooling fan. 4: Connect all cables properly. 5: Contact the agent or Inovance.
Overcurrent during acceleration	Err02	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The acceleration time is too short. 4: Manual torque boost or V/F curve is not appropriate. 5: The voltage is too low. 6: The startup operation is performed on the rotating motor. 7: A sudden load is added during acceleration. 8: The AC drive model is of too small power class.	1: Eliminate external faults. 2: Perform the motor autotuning. 3: Increase the acceleration time. 4: Adjust the manual torque boost or V/F curve. 5: Adjust the voltage to normal range. 6: Select rotational speed tracking restart or start the motor after it stops. 7: Remove the added load. 8: Select an AC drive of higher power class.
Overcurrent during deceleration	Err03	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The deceleration time is too short. 4: The voltage is too low. 5 : A sudden load is added during deceleration. 6: The braking unit and braking resistor are not installed.	1: Eliminate external faults. 2: Perform the motor autotuning. 3: Increase the deceleration time. 4: Adjust the voltage to normal range. 5: Remove the added load. 6: Install the braking unit and braking resistor.

Fault Name	Display	Possible Causes	Solutions
Overcurrent at constant speed	Err04	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The voltage is too low. 4: A sudden load is added during operation. 5: The AC drive model is of too small power class.	1: Eliminate external faults. 2: Perform the motor autotuning. 3: Adjust the voltage to normal range. 4: Remove the added load. 5: Select an AC drive of higher power class.
Overvoltage during acceleration	Err05	1: The input voltage is too high. 2: An external force drives the motor during acceleration. 3: The acceleration time is too short. 4: The braking unit and braking resistor are not installed.	1: Adjust the voltage to normal range. 2: Cancel the external force or install a braking resistor. 3: Increase the acceleration time. 4: Install the braking unit and braking resistor.
Overvoltage during deceleration	Err06	1: The input voltage is too high. 2: An external force drives the motor during deceleration. 3: The deceleration time is too short. 4: The braking unit and braking resistor are not installed.	1: Adjust the voltage to normal range. 2: Cancel the external force or install the braking resistor. 3: Increase the deceleration time. 4: Install the braking unit and braking resistor.
Overvoltage at constant speed	Err07	1: The input voltage is too high. 2: An external force drives the motor during deceleration.	1: Adjust the voltage to normal range. 2: Cancel the external force or install the braking resistor.
Control power supply fault	Err08	The input voltage is not within the allowable range.	Adjust the input voltage to the allowable range.
Undervoltage	Err09	1: Instantaneous power failure occurs on the input power supply. 2: The AC drive's input voltage is not within the allowable range. 3: The bus voltage is abnormal. 4: The rectifier bridge and buffer resistor are faulty. 5: The drive board is faulty. 6: The main control board is faulty.	1: Reset the fault. 2: Adjust the voltage to normal range. 3: Contact the agent or Inovance.
AC drive overload	Err10	1: The load is too heavy or lockedrotor occurs on the motor. 2: The AC drive model is of too small power class.	1: Reduce the load and check the motor and mechanical condition. 2: Select an AC drive of higher power class.

Fault Name	Display	Possible Causes	Solutions
Motor overload	Err11	1: P9-01 is set improperly. 2: The load is too heavy or lockedrotor occurs on the motor. 3: The AC drive model is of too small power class.	1: Set F9-01 correctly. 2: Reduce the load and check the motor and the mechanical condition. 3: Select an AC drive of higher power class.
Power input phase loss	Err12	1: The three-phase power input is abnormal. 2: The drive board is faulty. 3: The lightening board is faulty. 4: The main control board is faulty.	1: Eliminate external faults. 2: Contact the agent or Inovance.
Power output phase loss	Err13	1: The cable connecting the AC drive and the motor is faulty. 2: The AC drive's three-phase outputs are unbalanced when the motor is running. 3: The drive board is faulty. 4: The module is faulty.	1: Eliminate external faults. 2: Check whether the motor three-phase winding is normal. 3: Contact the agent or Inovance.
Module overheat	Err14	1: The ambient temperature is too high. 2: The air filter is blocked. 3: The fan is damaged. 4: The thermally sensitive resistor of the module is damaged. 5: The inverter module is damaged.	1: Lower the ambient temperature. 2: Clean the air filter. 3: Replace the damaged fan. 4: Replace the damaged thermally sensitive resistor. 5: Replace the inverter module.
External equipment fault	Err15	1: External fault signal is input via DI. 2: External fault signal is input via virtual I/O.	Reset the operation.
Communication fault	Err16	1: The host computer is in abnormal state. 2: The communication cable is faulty. 3: $\mathrm{P} 0-28$ is set improperly. 4: The communication parameters in group PD are set improperly.	1: Check the cabling of host computer. 2: Check the communication cabling. 3: Set P0-28 correctly. 4: Set the communication parameters properly.
Contactor fault	Err17	1: The drive board and power supply are faulty. 2: The contactor is faulty.	1: Replace the faulty drive board or power supply board. 2: Replace the faulty contactor.

Fault Name	Display	Possible Causes	Solutions
Current detection fault	Err18	1: The HALL device is faulty. 2: The drive board is faulty.	1: Replace the faulty HALL device. 2: Replace the faulty drive board.
Motor auto-tuning fault	Err19	1: The motor parameters are not set according to the nameplate. 2: The motor auto-tuning times out.	1: Set the motor parameters according to the nameplate properly. 2: Check the cable connecting the AC drive and the motor.
Encoder fault	Err20	1: The encoder type is incorrect. 2: The cable connection of the encoder is incorrect. 3: The encoder is damaged. 4: The PG card is faulty.	1: Set the encoder type correctly based on the actual situation. 2: Eliminate external faults. 3: Replace the damaged encoder. 4: Replace the faulty PG card.
EEPROM readwrite fault	Err21	The EEPROM chip is damaged.	Replace the main control board.
AC drive hardware fault	Err22	1: Overvoltage exists. 2: Overcurrent exists.	1: Handle based on overvoltage. 2: Handle based on overcurrent.
Short circuit to ground	Err23	The motor is short circuited to the ground.	Replace the cable or motor.
Accumulative running time reached	Err26	The accumulative running time reaches the setting value.	Clear the record through the parameter initialization function.
User-defined fault 1	Err27	1: The user-defined fault 1 signal is input via DI. 2: User-defined fault 1 signal is input via virtual I/O.	Reset the operation.
User-defined fault 2	Err28	1: The user-defined fault 2 signal is input via DI. 2: The user-defined fault 2 signal is input via virtual I/O.	Reset the operation.
Accumulative power-on time reached	Err29	The accumulative power-on time reaches the setting value.	Clear the record through the parameter initialization function.
Load becoming 0	Err30	The AC drive running current is lower than P9-64.	Check that the load is disconnected or the setting of P9-64 and P9-65 is correct.
PID feedback lost during running	Err31	The PID feedback is lower than the setting of PA-26.	Check the PID feedback signal or set PA-26 to a proper value.

Fault Name	Display	Possible Causes	Solutions
Pulse-by-pulse current limit fault	Err40	1: The load is too heavy or locked- rotor occurs on the motor. 2: The AC drive model is of too small power class.	1: Reduce the load and check the motor and mechanical condition. 2: Select an AC drive of higher power class.
Motor switchover fault during running	Err41	Change the selection of the motor via terminal during running of the AC drive.	Perform motor switchover after the AC drive stops.
Too large speed deviation	Err42	1: The encoder parameters are set incorrectly. 2: The motor auto-tuning is not performed. 3: P9-69 and P9-70 are set incorrectly.	1: Set the encoder parameters properly. 2: Perform the motor auto- tuning. 3: Set P9-69 and P9-70 correctly based on the actual situation.
Motor over-speed	Err43	1: The encoder parameters are set incorrectly. 2: The motor auto-tuning is not performed.3: P9-69 and P9-70 are set incorrectly.	1: Set the encoder parameters properly. 2: Perform the motor auto- tuning. 3: Set P9-69 and P9-70 correctly based on the actual situation.
Motor overheat	Err45	1: The cabling of the temperature sensor becomes loose. 2: The motor temperature is too high.	1: Check the temperature sensor cabling and eliminate the cabling fault. 2: Lower the carrier frequency or adopt other heat radiation measures.
Initial position fault	Err51	The motor parameters are not set based on the actual situation.	Check that the motor parameters are set correctly and whether the setting of rated current is too small.

7.2 Common Faults and Solutions

You may come across the following faults during the use of the AC drive. Refer to the following table for simple fault analysis.

Table 7-2 Troubleshooting to common faults of the AC drive

SN	Fault	Possible Causes	Solutions
1	There is no display at power-on.	1: There is no power supply to the AC drive or the power input to the AC drive is too low. 2: The power supply of the switch on the drive board of the AC drive is faulty. 3: The rectifier bridge is damaged. 4: The control board or the operation panel is faulty. 5: The cable connecting the control board and the drive board and the operation panel breaks.	1: Check the power supply. 2: Check the bus voltage. 3: Re-connect the 8-core and 28-core cables. 4: Contact the agent or Inovance for technical support.
2	" HC " is displayed at power-on.	1: The cable between the drive board and the control board is in poor contact. 2: Related components on the control board are damaged. 3: The motor or the motor cable is short circuited to the ground. 4: The HALL device is faulty. 5: The power input to the AC drive is too low.	1: Re-connect the 8-core and 28-core cables. 2: Contact the agent or Inovance for technical support.
3	"Err23" is displayed at power-on.	1: The motor or the motor output cable is short-circuited to the ground. 2: The AC drive is damaged.	1: Measure the insulation of the motor and the output cable with a megger. 2: Contact the agent or Inovance for technical support.
4	The AC drive display is normal upon poweron. But "HC" is displayed after running and stops immediately.	1:The cooling fan is damaged or locked-rotor occurs. 2: The external control terminal cable is short circuited.	1: Replace the damaged fan. 2: Eliminate external fault.
5	Err14 (module overheat) fault is reported frequently.	1: The setting of carrier frequency is too high. 2: The cooling fan is damaged, or the air filter is blocked. 3: Components inside the AC drive are damaged (thermal coupler or others).	1: Reduce the carrier frequency (P0-15). 2: Replace the fan and clean the air filter. 3: Contact the agent or Inovance for technical support.

SN	Fault	Possible Causes	Solutions
6	The motor does not rotate after the $A C$ drive runs．	1：Check the motor and the motor cables． 2：The AC drive parameters are set improperly（motor parameters）． 3：The cable between the drive board and the control board is in poor contact． 4：The drive board is faulty．	1：Ensure the cable between the $A C$ drive and the motor is normal． 2：Replace the motor or clear mechanical faults． 3：Check and re－set motor parameters．
7	The DI terminals are disabled．	1：The parameters are set incorrectly． 2：The external signal is incorrect． 3：The jumper bar across OP and ＋24 V becomes loose． 4：The control board is faulty．	1：Check and reset the parameters in group P4． 2：Re－connect the external signal cables． 3：Re－confirm the jumper bar across OP and +24 V ． 4：Contact the agent or Inovance for technical support．
8	The motor speed is always low in CLVC mode．	1：The encoder is faulty． 2：The encoder cable is connected incorrectly or in poor contact． 3：The PG card is faulty． 4：The drive board is faulty．	1：Replace the encoder and ensure the cabling is proper． 2：Replace the PG card． 3：Contact the agent or Inovance for technical support．
9	The AC drive reports overcurrent and overvoltage frequently．	1：The motor parameters are set improperly． 2：The acceleration／deceleration time is improper． 3：The load fluctuates．	1：Re－set motor parameters or re－perform the motor auto－ tuning． 2：Set proper acceleration／ deceleration time． 3：Contact the agent or Inovance for technical support．
10	Err17 is reported upon power－on or running．	The soft startup contactor is not picked up．	1：Check whether the contactor cable is loose． 2：Check whether the contactor is faulty． 3：Check whether 24 V power supply of the contactor is faulty． 4：Contact the agent or Inovance for technical support．
11	日．日．日． 日． 日 is displayed upon power－on．	Related component on the control board is damaged．	Replace the control board．

[^0]: Note

 - If vector control is used, motor auto-tuning must be performed because the advantages of vector control can only be utilized after correct motor parameters are obtained. Better performance can be achieved by adjusting speed regulator parameters in group F2 (or groups A2, A3, and A4 respectively for motor 2,3 , and 4).
 - For the permanent magnetic synchronous motor (PMSM), the G1100 does not support SFVC. CLVC is used generally. In some low-power motor applications, you can also use V/F.

